Quantum-Chemical Investigation of Epoxidic Compounds Transformation. Application for In Vitro and In Vivo Processes Modeling

  • Sergiy OkovytyyEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 17)


Transformation of epoxides is a key step for numerous processes important both for synthetic organic chemistry and biochemistry. Since experimental methods are restricted by the fixation of source compounds, intermediates and products of reactions, quantum chemical calculations serve as the only direct approach for prediction of the structure and energy of transition states thus clarifying detailed mechanisms of chemical reactions. This chapter summarizes results of quantum chemical investigation of epoxides transformation mechanisms in alkaline, neutral and acidic environments. Special attention has been paid to stereo- and regiochemistry of the processes, influence of solvation effects and nature of catalytic action of mono- and bidentate acids.


Epoxide ring opening Reaction mechanism Bimolecular nucleophilic substitution Basic catalysis Acid catalysis 


  1. 1.
    Yudin AK (2006) Aziridines and epoxides in organic synthesis. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Stirling CJM (1985) Evaluation of the effect of strain upon reactivity. Tetrahedron 41(9):1613–1666CrossRefGoogle Scholar
  3. 3.
    Bartok M, Lang KL (1980) The chemistry of functional groups. Supplement E. In: Patai S (ed) The chemistry of ethers, hydroxyl groups and their sulfur analogues. Part 2. Willey, New York, pp 609–682Google Scholar
  4. 4.
    Lewars EG (1984) Structure of small and large rings. In: Katritzky AR, Rees CW, Lwowski W (eds) Comprehensive heterocyclic chemistry, vol 7. Pergamon, New York, pp 95–130CrossRefGoogle Scholar
  5. 5.
    Dittmer DC (1984) Thiiranes and Thiirenes. In: Katritzky AR, Rees CW, Lwowski W (eds) Comprehensive heterocyclic chemistry, vol 7. Pergamon, New York, pp 131–184CrossRefGoogle Scholar
  6. 6.
    Crandall JK, Lin L-HC (1968) Base-promoted reactions of epoxides. V. 1-Alkylcycloalkene oxides. J Org Chem 33(6):2375–2378CrossRefGoogle Scholar
  7. 7.
    Gronert S, Lee JM (1995) Gas phase reactions of methyloxirane with HO − and methylthiirane with HO and HS. An ab initio study of addition and elimination. J Org Chem 60(14):4488–4497CrossRefGoogle Scholar
  8. 8.
    Apparu M, Barrelle M (1978) Reactivite des epoxydes—III: Methodes de synthese d’hydroxyalkyl-1 vinyl-2 cyclopropanes: reactions d’epoxydes γ,δ-ethyleniques avec les amidures de lithium dans l’HMTP. Tetrahedron 34(11):1691–1697CrossRefGoogle Scholar
  9. 9.
    Rickborn B, Thumell RP (1969) Stereoselectivity of the base-induced conversion of epoxides to allylic alcohols. J Org Chem 34(11):3583–3586CrossRefGoogle Scholar
  10. 10.
    Norman ROC, Coxon JM (1993) Principles of organic synthesis, 3rd edn. Chapman and Hall, BlackieCrossRefGoogle Scholar
  11. 11.
    Chacos N, Capdevila J, Falck JR, Manna S, Martin-Wixtrom C, Gill SS, Hammock BD, Estabrook, RW (1983) The reaction of arachidonic acid epoxides (epoxyeicosatrienoic acids) with a cytosolic epoxide hydrolase. Arch Biochem Biophys 223:639–648CrossRefGoogle Scholar
  12. 12.
    Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW, Parker C, Graham L, Engler MM, Hammock BD, Zeldin DC, Kroetz DL (2000) Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res 87:992–998CrossRefGoogle Scholar
  13. 13.
    Lonsdale R, Harvey JN, Mulholland AJ (2010) Compound I reactivity defines alkene oxidation selectivity in cytochrome P450cam. J Phys Chem B 114(2):1156–1162CrossRefGoogle Scholar
  14. 14.
    Jean DJ St Jr, Fotsch C (2012) Mitigating heterocycle metabolism in drug discovery. J Med Chem 55(13):6002–6020CrossRefGoogle Scholar
  15. 15.
    Koskinen M, Plna K (2000) Specific DNA adducts induced by some mono-substituted epoxides in vitro and in vivo. Chem Biol Interact 129(3):209–229CrossRefGoogle Scholar
  16. 16.
    Suresh CH, Vijayalakshmi KP, Mohan N, Ajitha M (2011) Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study. Org Biomol Chem 9:5115–5122CrossRefGoogle Scholar
  17. 17.
    Oesch F (1973) Mammalian epoxide hydrases. Inducible enzymes catalyzing inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3:305–340CrossRefGoogle Scholar
  18. 18.
    Oesch F, Hengstler JG, Arand M (2004) Detoxification strategy of epoxide hydrolase—the basis for a novel threshold for definable genotoxic carcinogens. Nonlinearity Biol Toxicol Med 2(1):21–26CrossRefGoogle Scholar
  19. 19.
    Jones RB, Mackrodt WC (1983) Structure–genotoxicity relationship for aliphatic epoxides. Biochem Pharmacol 32:2359–2362CrossRefGoogle Scholar
  20. 20.
    Ross WC (1950) The reactions of certain epoxides in aqueous solutions. J Chem Soc 2257–2272Google Scholar
  21. 21.
    Jones RB, Mackrodt WC (1982) Structure–mutagenicity relationships for chlorinated ethylenes: a model based on the stability of the metabolically derived epoxides. Biochem Pharmacol 31:3710–3712CrossRefGoogle Scholar
  22. 22.
    Kirkovsky LI, Lermontov SA, Zavorin SI, Sukhozhenko II, Zavelsky VI, Thier R, Bolt HM (1998) Hydrolysis of genotoxic methyl-substituted oxiranes: experimental kinetic and semiempirical studies. Environ Toxicol Chem 17:2141–2147CrossRefGoogle Scholar
  23. 23.
    Gervasi PG, Citti L, Delmonte M, Longo V, Benetti D (1985) Mutagenicity and chemical-reactivity of epoxidic intermediates of the isoprene metabolism and other structurally related-compounds. Mutat Res 156:77–82CrossRefGoogle Scholar
  24. 24.
    Polansky OE, Fratev F (1976) Pars orbital method: character orders in CNDO calculations and a new definition for bond orders in all valence electron methods. Chem Phys Lett 37(3):602–607CrossRefGoogle Scholar
  25. 25.
    Fujimoto H, Katata M, Yamabe S, Fukui K (1972) An MO-theoretical interpretation of the nature of chemical reactions III. Bond interchange. Bull Chem Soc Jpn 45(5):1320–1324CrossRefGoogle Scholar
  26. 26.
    Kas’yan LI (1999) Steric strain and reactivity of epoxynorbornanes (3-oxatricyclo[,4]octanes). Rus J Org Chem 35(5):635–665Google Scholar
  27. 27.
    Kas’yan LI, Gorb LG, Seferova MF, Chernousov DA, Svyatkin VA, Boldeskul IE (1990) Quantum-chemical investigation of alicyclic epoxide compounds. Zh Org Khim 26(1):3–10Google Scholar
  28. 28.
    Kas’yan LI, Gorb LG, Seferova MF, Dryuk VG (1990) Quantum-chemical study of electronic structure and reactivity of spirooxiranes. Ukr Khim Zhurn 56(10):1071–1076Google Scholar
  29. 29.
    Kretova EN, Podgornova VA, Shpekht NA, Ustavshchikov BF (1983) Theoretical and experimental studies of the reactivity of alkene oxides with acids. I. Calculation of the electronic structure of a series of alkene oxides and mechanism of cleavage of the epoxy ring in acid media. Osnov Organ Sintez i Neftekhimiya. Yaroslavl 19:82–87Google Scholar
  30. 30.
    Okovityi SI, Platitsyna EL, Kas’yan LI (2001) Theoretical study of alkaline methanolysis of alicyclic epoxy derivatives. Rus J Org Chem 37(3):345–350CrossRefGoogle Scholar
  31. 31.
    Fujimoto H, Hataue S, Koga N, Yamasaki J (1984) Ring-opening of oxirane by nucleophilic attack. Transition states and paired Interacting Orbitals. Tetrahedron Lett 25(46):5339–5342CrossRefGoogle Scholar
  32. 32.
    Lundin A, Panas I, Ahlberg E (2007) A mechanistic investigation of ethylene oxide hydrolysis to ethanediol. J Phys Chem A 111(37):9087–9092CrossRefGoogle Scholar
  33. 33.
    Glad SS, Jensen F (1994) Ab initio study of the nucleophilic ring opening of ethylene oxide. Connection between secondary isotope effects and transition structures. J Chem Soc Perkin Trans II 4:871–876CrossRefGoogle Scholar
  34. 34.
    Scheppele SE (1972) Kinetic isotope effects as a valid measure of structure–reactivity relations. Isotope effects and nonclassical theory. Chem Rev 72(5):511–532CrossRefGoogle Scholar
  35. 35.
    Williams IN (1984) Theoretical modelling of compression effects in enzymic methyl transfer. J Am Chem Soc 106(23):7206–7212CrossRefGoogle Scholar
  36. 36.
    Lau EY, Newby ZE, Bruice TC (2001) A theoretical examination of the acid-catalyzed and noncatalyzed ring-opening reaction of an oxirane by nucleophilic addition of acetate. Implications to epoxide hydrolases. J Am Chem Soc 123(14):3350–3357CrossRefGoogle Scholar
  37. 37.
    Kas’yan LI, Stepanova NV, Belyakova TA, Kunanets VK, Lutsenko AI, Zefirov NS (1984) Methanolysis of cyclic epoxide compounds. Zh Org Khim 20(11):2295–2301Google Scholar
  38. 38.
    Podlogar BL, Raber DJ (1989) Molecular mechanics calculations of epoxides. Extension of the MM2 force field. J Org Chem 54(21):5032–5035CrossRefGoogle Scholar
  39. 39.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods. I. Method. J Comput Chem 10(2):209–220CrossRefGoogle Scholar
  40. 40.
    Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 7(99):2224–2235CrossRefGoogle Scholar
  41. 41.
    Okovytyy SI, Platicina EL, Kasyan LI (1998) Theoretical investigation of the solvent influence on the oxirane alkaline methanolysis mechanism. Visn dnipropetr univ: Khim 2:132–135Google Scholar
  42. 42.
    Kas’yan LI, Gapanova RG, Okovityi SI (1994) Effect of medium on methanolysis of dicyclopentadiene diepoxide. Zh Org Khim 30(5):692–698Google Scholar
  43. 43.
    Okovytyy SI, Platicina EL, Kasyan LI (2000) Quantum chemical investigation of the environment influence on diepoxide dicyclopentadiene methanolysis. Visn Dnipropetr Univ: Khim 4:42–47Google Scholar
  44. 44.
    Okovytyy SI, Platicina EL, Seferova MF, Kasyan LI (2001) Theoretical investigation of the mechanism of spirooxiranes interaction with methanole. Visn Dnipropetr Univ: Khim 6:46–49Google Scholar
  45. 45.
    Laitinen T, Rouvinen J, Peräkylä M (1998) Ab initio quantum mechanical and density functional theory calculations on nucleophile- and nucleophile and acid-catalyzed opening of an epoxide ring: a model for the covalent binding of epoxyalkyl inhibitors to the active site of glycosidases. J Org Chem 63(23):8157–8162CrossRefGoogle Scholar
  46. 46.
    Helten H, Schirmeister T, Engels B (2004) Model calculations about the influence of protic environments on the alkylation step of epoxide, aziridine, and thiirane based cysteine protease inhibitors. J Phys Chem A 108(38):7691–7701CrossRefGoogle Scholar
  47. 47.
    Helten H, Schirmeister T, Engels B (2004) Theoretical studies about the influence of different ring substituents on the nucleophilic ring opening of three-membered heterocycles and possible implications for the mechanisms of cysteine protease inhibitors. J Org Chem 70(1):223–237Google Scholar
  48. 48.
    Meara JP, Rich DH (1996) Mechanistic studies on the inactivation of papain by epoxysuccinyl inhibitors. J Med Chem 39(17):3357–3366CrossRefGoogle Scholar
  49. 49.
    Alagona G, Scrocco E, Tomasi J (1979) Theoretical ab initio study of the reaction of formation of 2-fluorethanol. Theor Chim Acta 51(1):11–35CrossRefGoogle Scholar
  50. 50.
    Bobylev VA, Koldobskii SG, Tereshchenko GF, Gidaspov BV (1988) Khim Geterotsikl Soedin 9:1155–1168Google Scholar
  51. 51.
    Omoto K, Fujumoto H (2000) Theoretical study of activation of oxirane by bidentate acids. J Org Chem 65(8):2464–2471CrossRefGoogle Scholar
  52. 52.
    Shibaev AYu, Astrat’eva NV, Tereshchenko GF (1984) Quantum-chemical study of ethylene oxide amination. Zh Obsh Khim 54(12):2744–2747Google Scholar
  53. 53.
    Lundin A, Panas I, Ahlberg E (2009) Quantum chemical modeling of propene and butene epoxidation with hydrogen peroxide. J Phys Chem A 113(1):282–290CrossRefGoogle Scholar
  54. 54.
    Zheng Y, Zhang J (2010) Interface water catalysis of the epoxide opening. Chem Phys Chem 11(1):65–69Google Scholar
  55. 55.
    Long FA, Pritchard JG (1956) Hydrolysis of substituted ethylene oxides in H2O18 solutions. J Am Chem Soc 78(12):2663–2667CrossRefGoogle Scholar
  56. 56.
    Parker RE, Isaacs MS (1956) Mechanisms of epoxide reactions. Chem Rev 59(4):737–799CrossRefGoogle Scholar
  57. 57.
    Pritchard JG, Long FA (1956) Kinetics and mechanism of the acid-catalyzed hydrolysis of substituted ethylene oxides. J Am Chem Soc 78(12):2667CrossRefGoogle Scholar
  58. 58.
    Taft RW (1952) The Dependence of the rate of hydration of isobutene on the acidity function, H0, and the mechanism for olefin hydration in aqueous acids. J Am Chem Soc 74(21):5372–5376CrossRefGoogle Scholar
  59. 59.
    Wohl RA (1974) The Mechanism of the acid-catalized king opening of epoxides. A reinterpretative review. Chimia 28(1):1–5Google Scholar
  60. 60.
    Okovytyy S, Gorb L, Leszczynski J (2001) New insight on the mechanism of 2-oxabicyclobutane fragmentation. A high-level ab initio study. Tetrahedron 57(8):1509–15013CrossRefGoogle Scholar
  61. 61.
    Lebedev NN, Guskov KA (1963) Reaction of α-oxides. II. Kinetics of the reactions of ethylene oxides with acetic and monochloroacetic acids. Kinet Katal 4(1):116–127Google Scholar
  62. 62.
    Lebedev NN, Kozlov VM (1966) Kinetics and mechanism of reaction of ethylene oxide and acids. Zh Obsh Khim 2(2):261–265Google Scholar
  63. 63.
    Kakiuchi H, Tijima T (1980) The ring-opening reactions of propylene oxide with chloroacetic acids. Tetrahedron 36(8):1011–1016CrossRefGoogle Scholar
  64. 64.
    Stepanov EG, Podgornova VA, Ustavshchikov BF (1976) Effect of the structure of the carboxylic acid on the reactivity in the reaction with propylene oxide. Osnovn Organ Sintez i Neftekhimiya 6:29–31Google Scholar
  65. 65.
    Kretova EN, Podgornova VA, Bastrakova ZA, Chagina NT (1984) Zh Fizich Khim 58(11):2885–2887Google Scholar
  66. 66.
    Kretova EN (1985) Calculation of the electronic structure of protonated ethylene oxide by the SCF MO LCAO CNDO/BW method. Zh Strukt Khim 26(1):133–135Google Scholar
  67. 67.
    Nobes RH, Rodwell WR, Bouma WJ, Radom L (1981) The oxygen analog of the protonated cyclopropane problem. A theoretical study of the C2H5O+ potential energy surface. J Am Chem Soc 103(8):1913–1922CrossRefGoogle Scholar
  68. 68.
    Bock CW, George P, Glusker JP (1993) Ab initio molecular orbital studies on C2H5O+ and C2H4FO+: oxonium ion, carbocation, protonated aldehyde, and related transition-state structures. J Org Chem 58(21):5816–5825CrossRefGoogle Scholar
  69. 69.
    Zhao Y, Truhlar DG (2007) How well can new-generation density functionals describe protonated epoxides where older functionals fail? J Org Chem 72(1):295–298CrossRefGoogle Scholar
  70. 70.
    Carlier PR, Deora N, Crawford TD (2006) Protonated 2-methyl-1,2-epoxypropane: a challenging problem for density functional theory. J Org Chem 71(4):1592–1597CrossRefGoogle Scholar
  71. 71.
    Frenking G, Kato H, Fukui K (1975) An MO-theoretical treatment of the cationic ring-opening polymerisation. I. Ethylene oxide. Bull Chem Soc 45(1):6–12CrossRefGoogle Scholar
  72. 72.
    F de Sousa (2010) Theoretical study of acid-catalyzed hydrolysis of epoxides. J Phys Chem A 114(15):5187–6194CrossRefGoogle Scholar
  73. 73.
    Ford GP, Smith CT (1987) Gas-phase hydrolysis of protonated oxirane. Ab initio and semiempirical molecular orbital calculations. J Am Chem Soc 109(5):1325–1331CrossRefGoogle Scholar
  74. 74.
    Coxon JM, Maclagan DGAR, Rauk A, Thorpe AJ, Whalen D (1997) Rearrangement of protonated propene oxide to protonated propanal. J Am Chem Soc 119(20):4712–4718CrossRefGoogle Scholar
  75. 75.
    Korzan R, Upton B, Turnbull K, Seybold PG (2010) Quantum chemical study of the energetics and directionality of acid-catalyzed aromatic epoxide ring openings. Int J Quant Chem 110(15):2931–2937CrossRefGoogle Scholar
  76. 76.
    Shinoda H, Mori Y, Mizuguchi M (2006) Reinvestigation into the ring-opening process of monochloroethylene oxide by quantum chemical calculations. Int J Quant Chem 106(4):952–959CrossRefGoogle Scholar
  77. 77.
    George P, Bock CW, Glusker JP (1992) Protonation of monosubstituted oxiranes: a computational molecular orbital study of oxonium ion versus carbonium ion formation. J Phys Chem 96(9):3702–3708CrossRefGoogle Scholar
  78. 78.
    Schlegel HB, Mislow K, Bernardi F, Bottoni A (1977) An ab initio investigation into the SN2 reaction: frontside versus backside attack in the reaction of F with CH3F. Theor Chim Acta 44:245–256CrossRefGoogle Scholar
  79. 79.
    Partansky AM (1970) A study of accelerators for epoxy–amine condensation reaction. In: Lee H (ed) Epoxy resins. Am Chem Soc Adv Chem Ser 92:29–47CrossRefGoogle Scholar
  80. 80.
    Kelly TR, Meghani P, Ekkundi VS (1990) Diels–Alder reactions: rate acceleration promoted by a biphenylenediol. Tetrahedron Lett 31(24):3381–3384CrossRefGoogle Scholar
  81. 81.
    Fujimoto H, Koga N, Fukui K (1981) Coupled fragment molecular orbital method for interacting systems. J Am Chem Soc 103(25):7452–7457CrossRefGoogle Scholar
  82. 82.
    Fujimoto H, Koga N, Hataue I (1984) Orbital transformations in configuration analysis. A simplification in the description of charge transfer. J Phys Chem 88(16):3539–3544CrossRefGoogle Scholar
  83. 83.
    Fujimoto H, Yamasaki T, Mizutani H, Koga N (1985) A theoretical study of olefin insertions into titanium–carbon and titanium–hydrogen bonds. An analysis by paired interacting orbitals. J Am Chem Soc 107(22):6157–6161CrossRefGoogle Scholar
  84. 84.
    Fujimoto H, Yamasaki T (1986) A theoretical analysis of catalytic roles by paired interacting orbitals. Palladium(II)-catalyzed nucleophilic additions to carbon–carbon double bonds. J Am Chem Soc 108(4):578–581CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Organic ChemistryOles Honchar Dnipropetrovsk National UniversityDnipropetrovskUkrain

Personalised recommendations