Advertisement

The Local Ionization Energy as a Guide to Site Reactivities on Graphenes

  • Jane S. Murray
  • Zenaida Peralta-Inga Shields
  • Peter PolitzerEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 16)

Abstract

The average local ionization energy \({\bar{\text{I}}}(\mathbf{r})\) has the very important practical advantage that its minimum values on molecular surfaces, the \({{{\bar{\text{I}}}}_{\text{S,min}}},\) can generally identify the most reactive sites in a system in a single calculation, that encompasses all possible sites. The \({{{\bar{\text{I}}}}_{\text{S,min}}}\) can also, in many instances, rank these sites. Our analyses have shown interaction energies for hydrogenation at interior carbons of defect-containing model graphenes correlate with the \({{{\bar{\text{I}}}}_{\text{S,min}}}\) at these sites. Furthermore, we are able to show a relationship between the magnitude of the lowest interior \({{{\bar{\text{I}}}}_{\text{S,min}}}\) within each member of a series of pristine and defect-containing graphene models and the corresponding hydrogenation energies. A limitation of \({\bar{\text{I}}}(\mathbf{r})\) that must be recognized is that it corresponds to the system prior to interaction, and cannot reflect factors that may accompany or follow it. Such factors may reinforce or oppose the predictions from the \({\bar{\text{{I}}}_{\text{S,min}}}.\) Considerable experience has shown, however, that the \({{{\bar{\text{I}}}}_{\text{S,min}}}\) can generally identify satisfactorily at least the most reactive sites—and can often rank the next ones as well.

Keywords

Site reactivities Average local ionization energies Pristine and defect-containing graphene models Hydrogenation energies 

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163Google Scholar
  2. 2.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354–358Google Scholar
  3. 3.
    Kadish KM, Ruoff RS (eds) (1996) Fullerenes: recent advances in the physics and chemistry of fullerenes and related materials. Electrochemical Society, PenningtonGoogle Scholar
  4. 4.
    Iijima S (1991) Nature 354:56–58Google Scholar
  5. 5.
    Hargittai I (2010) Struct Chem 21:1151–1154Google Scholar
  6. 6.
    Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, BerlinGoogle Scholar
  8. 8.
    Politzer P, Murray JS, Lane P, Concha MC (2006) In: Balandin AA, Wang KL (eds) Handbook of semiconductor nanostructures and nanodevices, vol 2. American Scientific Publishers, Stevenson Ranch, Chap 7, pp 215–240Google Scholar
  9. 9.
    Dinadayalane TC, Leszczynski J (2006) In: Balbuena PB, Seminario JM (eds) Nanomaterials: design and simulation. Elsevier, Amsterdam, pp 167–199Google Scholar
  10. 10.
    Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155–1169Google Scholar
  11. 11.
    Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4th ed. Wiley-Interscience, New York (Sect. 11-1)Google Scholar
  12. 12.
    Lide DR (ed) (1997) Handbook of chemistry and physics, 78th ed. CRC Press, Boca RatonGoogle Scholar
  13. 13.
    Bondi A (1964) J Phys Chem 68:441–451Google Scholar
  14. 14.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SW, Grigorieva IV, Firsov AA (2004) Science 306:666–669Google Scholar
  15. 15.
    Katsnelson MI (2007) Mater Today 10:20–27Google Scholar
  16. 16.
    Flynn GW (2011) J Chem Phys 135:50901(1–8).Google Scholar
  17. 17.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197–200Google Scholar
  18. 18.
    Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P (2008) Phys Rev Lett 101:96802–96804Google Scholar
  19. 19.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162Google Scholar
  20. 20.
    Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song Y II et al (2010) Nat Nanotech 5:574–578Google Scholar
  21. 21.
    Serrano J, Bosak A, Arenal R, Krisch M, Watanabe K, Taniguchi T, Kanda H, Rubio A, Wirtz L (2007) Phys Rev Lett 98:95503–95504Google Scholar
  22. 22.
    Kang HS (2005) J Am Chem Soc 127:9839–9843Google Scholar
  23. 23.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nature Mater 6:652–655Google Scholar
  24. 24.
    Rangel NL, Seminario JM (2010) J Chem Phys 132:125102(1–4)Google Scholar
  25. 25.
    Yavari F, Koratkar N (2012) J Phys Chem Lett 3:1746–1753Google Scholar
  26. 26.
    Meyer JC, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U (2009) Nano Lett 9:2683–2689Google Scholar
  27. 27.
    Cabria I, López MJ, Alonso JA (2005) J Chem Phys 123:204721(1–9)Google Scholar
  28. 28.
    Denis PA (2011) Comput Theor Chem 974:21–25Google Scholar
  29. 29.
  30. 30.
    Oubal M, Picaud S, Rayez M-T, Rayez J-C (2012) Comput Theor Chem 990:159–166Google Scholar
  31. 31.
    Chigo Ahota EC, Escobedo-Morales A, Salazar Villanueva MS, Vázquez-Cuchillo O, Rubio Rosas ER (2013) J Mol Model 19:839–846Google Scholar
  32. 32.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457–460Google Scholar
  33. 33.
    Luo Z, Yu T, Kim K, Ni Z, You Y, Lim S, Shen Z (2009) ACS Nano 3:1781–1788Google Scholar
  34. 34.
    Dai J, Yuan J, Giannozzi P (2009) Appl Phys Lett 95:232105(1–3)Google Scholar
  35. 35.
    Johnson JJ, Behnam A, Pearton JJ, Ural A (2010) Adv Mater 22:4877–4880Google Scholar
  36. 36.
    Burgess JS, Baldwin JW, Robinson JT, Bulat FA, Houston BH (2011) In: Nelson DJ, Brammer CN (eds) Fluorine-related nanoscience with energy applications, vol 1064. ACS Symposium Series, pp 11–30Google Scholar
  37. 37.
    Burgess JS, Matis BR, Robinson JT, Bulat FA, Perkins FK, Houston BH, Baldwin JW (2011) Carbon 49:4420–4426Google Scholar
  38. 38.
    Casolo S, Lovvik OM, Martinazzo R, Tantardini GF (2009) J Chem Phys 130:54704(1–10)Google Scholar
  39. 39.
    Denis PA, Iribarne F (2009) J Mol Struct (Theochem) 907:93–103Google Scholar
  40. 40.
    Teillet-Billy D, Rougeau N, Ivanovskaya VV, Sidis V (2010) Int J Quantum Chem 110:2231–2236Google Scholar
  41. 41.
    Ghosh A, Rao KV, Voggu R, George SJ (2010) Chem Phys Lett 488:198–201Google Scholar
  42. 42.
    Nava Contreras C, Hernandez Cocoletzi H, Chigo Anota E (2011) J Mol Model 17:2093–2097Google Scholar
  43. 43.
    Šljivančanin Ž, Balog R, Hornekaer L (2012) Chem Phys Lett 541:70–74Google Scholar
  44. 44.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501Google Scholar
  45. 45.
    Crespi VH, Benedick LX, Cohen ML, Louie SG (1996) Phys Rev B 53:R13303Google Scholar
  46. 46.
    Sjoberg P, Brinck T, Murray JS, Politzer P (1990) Can J Chem 68:1440–1443Google Scholar
  47. 47.
    Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742Google Scholar
  48. 48.
    Koopmans TA (1934) Physica 1:104–113Google Scholar
  49. 49.
    Nesbet RK (1965) Adv Chem Phys 9:321–363Google Scholar
  50. 50.
    Nagy Á, Parr RG, Liu S (1996) Phys Rev A 53:3117–3121Google Scholar
  51. 51.
    Gál T, Nagy Á (1997) Mol Phys 91:873–880Google Scholar
  52. 52.
    Ghosh SK, Balbás LC (1985) J Chem Phys 83:5778–5783Google Scholar
  53. 53.
    Ghosh SK, Berkowitz M, Parr RG (1984) Proc Natl Acad Sci USA 81:8028–8031Google Scholar
  54. 54.
    Ayers PW, Parr RG, Nagy Á (2002) Int J Quantum Chem 90:309–326Google Scholar
  55. 55.
    Bulat FA, Levy M, Politzer P (2009) J Phys Chem A 113:1384–1389Google Scholar
  56. 56.
    Politzer P, Shields ZP-I, Bulat FA, Murray JS (2011) J Chem Theor Comput 7:377–384Google Scholar
  57. 57.
    Ayers PW, Nagy Á (2007) J Chem Phys 126:144108(1–6)Google Scholar
  58. 58.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979Google Scholar
  59. 59.
    Politzer P, Abu-Awwad F, Murray JS (1998) Int J Quantum Chem 69:607–613Google Scholar
  60. 60.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691Google Scholar
  61. 61.
    Murray JS, Brinck T, Politzer P (1992) J Mol Struct (Theochem) 255:271–281Google Scholar
  62. 62.
    Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27Google Scholar
  63. 63.
    Politzer P, Murray JS, Lane P, Concha MC (2006) In: Sokalski WA (ed) Molecular materials with specific interactions: modeling & design. Springer, London, Chap 5Google Scholar
  64. 64.
    Politzer P, Bulat FA, Burgess J, Baldwin JW, Murray JS (2013) In: Sukumar N (ed) A matter of density. Wiley, Hoboken, Chap 9Google Scholar
  65. 65.
    Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) J Mol Model 11:258–264Google Scholar
  66. 66.
    Politzer P, Murray JS, Concha MC (2007) In: Seminario JM (ed) Molecular and nano electronics: analysis, design and simulation. Elsevier, AmsterdamGoogle Scholar
  67. 67.
    Xiao D, Bulat FA, Yang W, Beratan D (2008) Nano Lett 8:2814–2818Google Scholar
  68. 68.
    Murray JS, Politzer P (2011) WIREs Comp Mol Sci 1:153–163Google Scholar
  69. 69.
    Hernández Rosas JJ, Ramirez GRE, Escobedo-Morales A, Chigo Anota E (2011) J Mol Model 17:1133–1139Google Scholar
  70. 70.
    Wang Y, Qian HJ, Morokuma K, Irle S (2012) J Phys Chem A 116:7154–7160Google Scholar
  71. 71.
    Bulat FA, Burgess JS, Matis BR, Baldwin JW, Macaveiu L, Murray JS, Politzer P (2012) J Phys Chem A 116:8644–8652Google Scholar
  72. 72.
    Baskin Y, Meyer I (1955) Phys Rev 100:544Google Scholar
  73. 73.
    Murray JS, Shields ZP-I, Lane P, Macaveiu L, Bulat FA (2013) J Mol Model 19:2825–2833Google Scholar
  74. 74.
    Barth WE, Lawton RG (1966) J Am Chem Soc 88:380–381Google Scholar
  75. 75.
    Hedberg L, Hedberg K, Cheng P-C, Scott LT (2000) J Phys Chem A 104:7689–7694Google Scholar
  76. 76.
    Slayden SW, Liebman JF (2001) Chem Rev 101:1541–1566Google Scholar
  77. 77.
    Scott LT, Bronstein HF, Preda DV, Ansems RBM, Bratchen MS, Hagen S (1999) Pure Appl Chem 71:209–219Google Scholar
  78. 78.
    Lusk MT, Carr DC (2008) Phys Rev Lett 100:1–4Google Scholar
  79. 79.
    Lusk MT, Carr DC (2009) Phys Rev Lett 47:2226–2232Google Scholar
  80. 80.
    Lusk MT, Wu DT, Carr DC (2010) Phys Rev B 81:1–9Google Scholar
  81. 81.
    Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct (Theochem) 501–502:241–250Google Scholar
  82. 82.
    Peralta Z, Murray JS, Grice ME, Boyd S, O’Connor CJ, Politzer P (2001) J Mol Struct (Theochem) 549:147–158Google Scholar
  83. 83.
    Sharma R, Baik JH, Perera CJ, Strano MS (2010) Nano Lett 10:398–405Google Scholar
  84. 84.
    Dinadayalane TC, Murray JS, Concha MC, Politzer P (2010) J Chem Theory Comp 6:1351–1357Google Scholar
  85. 85.
    Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:22399–22410Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jane S. Murray
    • 1
    • 2
  • Zenaida Peralta-Inga Shields
    • 1
  • Peter Politzer
    • 1
    • 2
    Email author
  1. 1.CleveTheoCompClevelandUSA
  2. 2.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations