Advertisement

Challenges Associated to the Multi-Scale Modeling of Fuel Electro-Oxidation for Fuel Cell Applications

  • King-Ki Fung
  • Purnima Kharidehal
  • Daniela S. MainardiEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 16)

Abstract

The high-cost of materials and efficiency limitations of chemical fuel cells is a topic of primary concern. Industries are currently focusing on proton-exchange membrane (PEM) fuel cells engineering and design for improved performance, durability, and reduced cost. This situation has led to an urgent need for understanding, predicting, and optimizing the various transport and electrochemical processes that occur in PEM fuel cells, where modeling plays a key role. Challenges associated to a multi-scale modeling approach to model fuel electro-oxidation in PEM and bio fuel cells are discussed here. A combination of tools involving Density Functional Theory, Transition State Theory, Molecular Mechanics and Kinetic Monte Carlo are combined in order to model fuel electro-oxidation. Information regarding energy barriers and pre-exponential factors needed to determine reaction rates are obtained from Density Functional Theory and Transition State Theory respectively. These microscopic reaction rates are then provided as inputs in a Kinetic Monte Carlo approach, and the fuel oxidation process is modeled on a 2-D reactive surface representing the catalyst.

Keywords

Catalyst Enzyme Fuel cell Fuel oxidation Modeling Platinum 

References

  1. 1.
    Aaron D, Yiacoumi S, Tsouris C (2008) Effects of proton-exchange membrane fuel-cell operating conditions on charge transfer resistances measured by electrochemical impedance spectroscopy. Sep Sci Technol 43(9–10):2307–2320CrossRefGoogle Scholar
  2. 2.
    Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, ChichesterCrossRefGoogle Scholar
  3. 3.
    Sahu AK et al (2009) Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: an overview. Bull Mater Sci 32(3):285–294CrossRefGoogle Scholar
  4. 4.
    DOE announces up to $ 74 million for fuel cell research and development. Department of Energy, Editor. 2010, GPO, Washington. http://energy.gov/articles/doe-announces-74-million-fuelcell-research-and-development.
  5. 5.
    Markovic NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229CrossRefGoogle Scholar
  6. 6.
    Cleghorn SJC, Ren X, Springer TE, Wilson MS, Zawodzinski C, Zawodzinski TA, Gottesfeld S (1997) PEM fuel cells for transportation and stationary power generation applications. Int J Hydrog Energy 22:1137–1144CrossRefGoogle Scholar
  7. 7.
    Iwase M, Kawatsu S (1995) Optimized CO tolerant electrocatalysts for polymer electrolyte fuel cells. In: Proceedings of the first International Symposium on proton conducting membrane fuel cellsGoogle Scholar
  8. 8.
    Beard BC, Ross PN (1990) The structure and activity of Pt†co alloys as oxygen reduction electrocatalysts. J Electrochem Soc 137(11):3368–3374CrossRefGoogle Scholar
  9. 9.
    Bockris JOM, Khan SUM (1993) Surface electrochemistry: a molecular level approach. Plenum Press, New YorkCrossRefGoogle Scholar
  10. 10.
    Ghosh M et al (1995) The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 Å. Structure (London) 3:1771–1787Google Scholar
  11. 11.
    Fernandez GM, Anderson JA (1996) Alloy formation and stability in Pd-Cu bimetallic catalysts. J Phys Chem 100:16247–16254CrossRefGoogle Scholar
  12. 12.
    Toda T et al (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756CrossRefGoogle Scholar
  13. 13.
    Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J Electroanal Chem 460(1):258–262CrossRefGoogle Scholar
  14. 14.
    Neergat M, Shukla AK, Gandhi KS (2001) Platinum-based alloys as oxygen reduction catalysts for solid polymer electrolyte direct methanol fuel cells. J Appl Electrochem 31(4):373–378CrossRefGoogle Scholar
  15. 15.
    Huang SP, Mainardi DS, Balbuena PB (2003) Structure and dynamics of graphite-supported bimetallic nanoclusters. J Surf Sci 545:163–179CrossRefGoogle Scholar
  16. 16.
    Markovic NM et al (1999) Oxygen reduction reaction on Pt(111): effects of bromide. J Electroanal Chem 467(1–2):157–163CrossRefGoogle Scholar
  17. 17.
    Himo F (2002) Catalytic mechanism of benzylsuccinate synthase, a theoretical study. J Phys Chem B 106(31):7688CrossRefGoogle Scholar
  18. 18.
    Combe N, Jensen P, Pimpinelli A (2000) Changing shapes in the nanoworld. Phys Rev Lett 85(1):110–113CrossRefGoogle Scholar
  19. 19.
    Heinebrodt M et al (1999) Bonding character of bimetallic clusters Au[sub n]X[sub m] (X = Al, In, Cs). J Chem Phys 110(20):9915–9921CrossRefGoogle Scholar
  20. 20.
    Vigier F et al (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40(1–4):111–121CrossRefGoogle Scholar
  21. 21.
    Kannan AM, Renugopalakrishnan V, Filipek S, Li P, Audette GF, Munukutla L (2009) Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins. J Nanosci Nanotechnol 3:1665–1678Google Scholar
  22. 22.
    Hibbert EG et al (2005) Directed evolution of biocatalytic processes. Biomol Eng 22(1–3):11–19CrossRefGoogle Scholar
  23. 23.
    Hollmann F et al (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13(2):226–265CrossRefGoogle Scholar
  24. 24.
    Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta (BBA)—specialized section on biophysical subjects 88(2):375–383Google Scholar
  25. 25.
    Kim J, Ping Wang HJ (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308CrossRefGoogle Scholar
  26. 26.
    Liu L et al (2008) A novel inhibition biosensor constructed by layer-by-layer technique based on biospecific affinity for the determination of sulfide. Sens Actuators B: Chem 129(1):218–224Google Scholar
  27. 27.
    Suwansa-ard S et al (2005) Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosens Bioelectron 21(3):445–454CrossRefGoogle Scholar
  28. 28.
    Sakai H et al (2009) A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ Sci 2(1):133–138CrossRefGoogle Scholar
  29. 29.
    Laurinavicius V et al (2002) Bioelectrochemical application of some PQQ-dependent enzymes. Bioelectrochemistry 55:29–32CrossRefGoogle Scholar
  30. 30.
    Duine JA (1999) The PQQ story (Review). J Biosci Bioeng 88:231–236CrossRefGoogle Scholar
  31. 31.
    Lapėnaitė I, Kurtinaitienė B, Pliuškys L, Laurinavičius V, Bachmatova I, Marcinkevičienė L, Ramanavičius A (2003) Application of PQQ-GDH based polymeric layers in design of biosensors for detection of heavy metals. Mater Sci (MEDŽIAGOTYRA) 9(4):431–435Google Scholar
  32. 32.
    Zhang XC, Ranta A, Halme A (2006) Direct methanol biocatalytic fuel cell—considerations of restraints on electron transfer. Biosens Bioelectron 21:2052–2057CrossRefGoogle Scholar
  33. 33.
    Zhang XC, Ranta A, Halme A (2003) Effect of different catalytic oxidants on the performance of a biocatalytic methanol fuel cell. In: Proceedings 204th meeting of the electrochemical societyGoogle Scholar
  34. 34.
    Tozzini V (2010) Multiscale modeling of proteins. Acc Chem Res 43:220–230CrossRefGoogle Scholar
  35. 35.
    Dalby PA (2007) Engineering enzymes for biocatalysis. Recent Pat Biotechnol 1:1–9Google Scholar
  36. 36.
    Parks JM, Imhof P, Smith JC (2010) Understanding enzyme catalysis using computer simulation. Encyclopedia of catalysis 2nd edition. WileyGoogle Scholar
  37. 37.
    Lyubartsev A, Tu Y, Laaksonen A (2009) Hierarchical multiscale modelling scheme from first principles to mesoscale. J Comput Theor Nanosci 6:1–9Google Scholar
  38. 38.
    Medina GM, Rey RM (2009) Molecular and multiscale modeling: review on the theories and applications in chemical engineering. CT&F—Ciencia, Tecnologíay Futuro 3(5):205–224Google Scholar
  39. 39.
    Car R (2002) Introduction to density-functional theory and ab-initio molecular dynamics. Quant Struct-Activity Relatsh 21(2):97–104CrossRefGoogle Scholar
  40. 40.
    Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55(1):427–455CrossRefGoogle Scholar
  41. 41.
    Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85Google Scholar
  42. 42.
    Nieminen RM (2002) From atomistic simulation towards multiscale modelling of materials. J Phys Condens Matter 14:2859–2876CrossRefGoogle Scholar
  43. 43.
    Lukkien JJ et al (1998) Efficient Monte Carlo methods for the simulation of catalytic surface reactions. Phys Rev E 58(2):2598–2610CrossRefGoogle Scholar
  44. 44.
    Nieminen RM, Jansen APJ (1997) Monte Carlo simulations of surface reactions. Appl Catal A:General 160:99–123Google Scholar
  45. 45.
    Dandala NKR, Jansen APJ, Mainardi DS (2010) A multi-scale modeling approach for studying MDH-catalyzed methanol oxidation. In: Derosa P, Cagin T (eds) Multiscale modeling: from atoms to devices. CRC Press, Florida, pp 91–112CrossRefGoogle Scholar
  46. 46.
    Hills CW et al (1999) Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors. Langmuir 15(3):690–800CrossRefGoogle Scholar
  47. 47.
    Thomas G (2000) Overview of storage development. D.o. Energy, San RamonGoogle Scholar
  48. 48.
    Vigier F et al (2004) Development of anode catalysts for a direct ethanol fuel cell. J Appl Electrochem 34(4):439–446CrossRefGoogle Scholar
  49. 49.
    Datta J et al (2009) A comprehensive study on the effect of Ru addition to Pt electrodes for direct ethanol fuel cell. Bull Mater Sci 32(6):643–652CrossRefGoogle Scholar
  50. 50.
    Ribeiro J et al (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38(5):653–662CrossRefGoogle Scholar
  51. 51.
    Demirbas A (2008) Direct use of methanol in fuel cells. Energy Sour Part A Recovery Util Environ Eff 30(6):529–535CrossRefGoogle Scholar
  52. 52.
    Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sour 114(1):32–53CrossRefGoogle Scholar
  53. 53.
    Gurau B et al (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation 1. J Phys Chem B 102(49):9997–10003CrossRefGoogle Scholar
  54. 54.
    Ferrin P et al (2009) Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted–Evans–Polanyi relations. J Am Chem Soc 131(16):5809–5815CrossRefGoogle Scholar
  55. 55.
    Antolini E (2007) Platinum-based ternary catalysts for low temperature fuel cells: part I. Preparation methods and structural characteristics. Appl Catal B Environ 74(3–4):324–336CrossRefGoogle Scholar
  56. 56.
    Westmoreland PR et al (2002) Applying molecular and materials modeling. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  57. 57.
    Jusys Z et al (2002) Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. J Power Sour 105(2):297–304CrossRefGoogle Scholar
  58. 58.
    Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. Shock 3:2Google Scholar
  59. 59.
    Wang HF, Liu ZP (2008) Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J Am Chem Soc 130(33):10996CrossRefGoogle Scholar
  60. 60.
    Accelrys Inc (2003) DMOL3 user guide 2003. San DiegoGoogle Scholar
  61. 61.
    Yang LX et al (2004) A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation. J Power Sour 137(2):257–263CrossRefGoogle Scholar
  62. 62.
    Bruce DA (2013) Catalysis: making the leap to tomorrow’s fuels. In: LA-SiGMA. RustonGoogle Scholar
  63. 63.
    Himo F (2006) Quantum chemical modeling of enzyme active sites and reaction mechanisms. Theor Chem Acc 116:232–240CrossRefGoogle Scholar
  64. 64.
    Siegbahn PE, Himo F (2011) The quantum chemical cluster approach for modeling enzyme reactions. WIREs Comput Mol Sci 1:323–336Google Scholar
  65. 65.
    Siegbahn PEM, Himo F (2009) Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14:643–651CrossRefGoogle Scholar
  66. 66.
    Shi-Lu C, Wei-Hai F, Himo F (2008) Technical aspects of quantum chemical modeling of enzymatic reactions: the case of phosphotriesterase. Theor Chem Acc 120:515–522CrossRefGoogle Scholar
  67. 67.
    Noodleman L et al (2004) Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem Rev 104:459–508CrossRefGoogle Scholar
  68. 68.
    Lovell T et al (2003) Density functional methods applied to metalloenzymes. Coordination Chem Rev 238–239: 211–232CrossRefGoogle Scholar
  69. 69.
    Idupulapati NB, Mainardi DS (2009) Coordination and binding of ions in Ca2+- and Ba2+-containing methanol dehydrogenase and interactions with methanol. J Mol Struct: THEOCHEM 901(1–3):72Google Scholar
  70. 70.
    Idupulapati NB, Mainardi DS (2010) Methanol electro-oxidation by methanol dehydrogenase enzymatic catalysts: a computational study. In: Balbuena PB, Subramanian VR (eds) Theory and experiment in electrocatalysis. Springer, New York, pp 243–274CrossRefGoogle Scholar
  71. 71.
    Williams PA et al (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Cryst Sect D D61:75–79Google Scholar
  72. 72.
    Anthony C, Williams P (2003) The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647:18–23CrossRefGoogle Scholar
  73. 73.
    Anthony C (2000) Methanol dehydrogenase, a PQQ-containing quinoprotein dehydrogenase. In: Holzenburg A, Scrutton NS (eds) Subcellular biochemistry. Kluwer Academic, New York, pp 73–118Google Scholar
  74. 74.
    Becke AD (1988) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 88:2547CrossRefGoogle Scholar
  75. 75.
    Lee C, Yang W, Parr R (1998) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 37:786Google Scholar
  76. 76.
    Idupulapati NB, Mainardi DS (2008) A DMOL3 study of the methanol addition-elimination oxidation mechanism by methanol dehydrogenase enzyme. Mol Sim 34:1057–1064CrossRefGoogle Scholar
  77. 77.
    Cornish-Bowden A (2004) Fundamentals of enzyme kinetics. Portland Press, LondonGoogle Scholar
  78. 78.
    Idupulapati NB, Mainardi DS (2010) Quantum chemical modeling of methanol oxidation mechanisms by methanol dehydrogenase enzyme: effect of substitution of calcium by barium in the active site. J Phys Chem A 114(4):1887CrossRefGoogle Scholar
  79. 79.
    Sarmaa AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • King-Ki Fung
    • 1
  • Purnima Kharidehal
    • 1
  • Daniela S. Mainardi
    • 1
    Email author
  1. 1.Chemical Engineering Program, Institute for MicromanufacturingLouisiana Tech UniversityRustonUSA

Personalised recommendations