Initialisation of Land Surface Variables for Numerical Weather Prediction

  • Patricia de RosnayEmail author
  • Gianpaolo Balsamo
  • Clément Albergel
  • Joaquín Muñoz-Sabater
  • Lars Isaksen
Part of the Space Sciences Series of ISSI book series (SSSI, volume 46)


Land surface processes and their initialisation are of crucial importance for Numerical Weather Prediction (NWP). Current land data assimilation systems used to initialise NWP models include snow depth analysis, soil moisture analysis, soil temperature and snow temperature analysis. This paper gives a review of different approaches used in NWP to initialise land surface variables. It discusses the observation availability and quality, and it addresses the combined use of conventional observations and satellite data. Based on results from the European Centre for Medium-Range Weather Forecasts (ECMWF), results from different soil moisture and snow depth data assimilation schemes are shown. Both surface fields and low-level atmospheric variables are highly sensitive to the soil moisture and snow initialisation methods. Recent developments of ECMWF in soil moisture and snow data assimilation improved surface and atmospheric forecast performance.


Land surface Data assimilation Numerical weather prediction Soil moisture Snow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albergel C, de Rosnay P, Gruhier C, Sabater JM, Hasenauer S, Isaksen L, Kerr Y, Wagner W (2012) Evaluation of remotely sensed and modelled soil moisture products using global ground-based in-situ observations. Remote Sens Environ 18:215–226. doi: 10.1016/j.rse.2011.11.017 CrossRefGoogle Scholar
  2. Balsamo G, Mahfouf JF, Bélair S, Deblonde G (2007) A land data assimilation system for soil moisture and temperature: an information content study. J Hydrometeorol 8:1225–1242. doi: 10.1175/2007JHM819.1 CrossRefGoogle Scholar
  3. Balsamo G, Viterbo P, Beljaars A, van den Hurk B, Hirsch M, Betts A, Scipal K (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J Hydrometeorol 10:623–643CrossRefGoogle Scholar
  4. Barnett T, Adam J, Lettenmaier D (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309CrossRefGoogle Scholar
  5. Bartalis Z, Wagner W, Naeimi V, Hasenauer S, Scipal K, Bonekamp H, Figa J, Anderson C (2007) Initial soil moisture retrievals from the METOP-A advanced scatterometer (ASCAT). Geophys Res Lett 34. doi: 10.1029/2007GL031088
  6. Bélair S, Crevier LP, Mailhot J, Bilodeau J, Delage Y (2003) Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: warm season results. J Hydrometeorol 4:352–470CrossRefGoogle Scholar
  7. Beljaars ACM, Viterbo P, Miller M, Betts A (1996) Sensitivity to land surface parameterization and soil anomalies. Mon Weather Rev 124:362–383CrossRefGoogle Scholar
  8. Best M, Pryor M, Clark D, Rooney G, Essery R, Ménard C, Edwards J, Hendry M, Porson A, Gedney N, Mercado L, Sitch S, Blyth E, Boucher O, Cox P, Grimmond C, Harding R (2011) The joint UK land environment simulator (JULES), model description Part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi: 10.5194/gmd-4-677-2011 CrossRefGoogle Scholar
  9. Boone A, Habets F, Noilhan J, Clark D, Dirmeyer P, Fox S, Gusev Y, Haddeland I, Koster R, Lohmann D, Mahanama S, Mitchell K, Nasonova O, Niu GY, Pitman A, Polcher J, Shmakin A, Tanaka K, van den Hurk B, Vérant S, Verseghy D, Viterbo P, Yang ZL (2004) The Rhone-Aggregation land surface scheme intercomparison project: an overview. J Clim 17:187–208CrossRefGoogle Scholar
  10. Brasnett B (1999) A global analysis of snow depth for numerical weather prediction. J Appl Meteorol 38:726–740CrossRefGoogle Scholar
  11. Brown R, Mote P (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22:2124–2144CrossRefGoogle Scholar
  12. Brubaker K, Pinker R, Deviatova E (2009) Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data. J Hydrometeorol 6:1002–1017CrossRefGoogle Scholar
  13. Calvet JC, Fritz N, Froissard F, Suquia D, Petitpa B, Piguet B (2007) In situ soil moisture observations for the CAL/VAL of SMOS: the SMOSMANIA network. International geoscience and remote sensing symposium, IGARSS, Barcelona, Spain. doi: 10.1109/IGARSS.2007.4423019
  14. Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009–2010: a case study of an extreme arctic oscillation event. Geophys Res Lett 37:117707. doi: 10.1029/2010GL044256 CrossRefGoogle Scholar
  15. Cressman G (1959) An operational objective analysis system. Mon Weather Rev 87(10):367–374CrossRefGoogle Scholar
  16. De Lannoy G, Reichle R, Arsenault K, Houser P, Kumar S, Verhoest N, Pauwels V (2012) Multiscale assimilation of Advanced Microwave Scanning Radiometer EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour Res 48:w01522. doi: 10.1029/2011WR010588 CrossRefGoogle Scholar
  17. de Rosnay P, Polcher J, Bruen M, Laval K (2002) Impact of a physically based soil water flow and soil–plant interaction representation for modeling large scale land surface processes. J Geophys Res 107(11). doi: 10.1029/2001JD000634 CrossRefGoogle Scholar
  18. de Rosnay P, Dragosavac M, Isaksen L, Andersson E, Haseler J (2011a) Use of new snow data from Sweden in IFS cycle 36r4. ECMWF Res Memo R483/PdR/1139Google Scholar
  19. de Rosnay P, Balsamo G, Isaksen L (2011b) Snow analysis for numerical weather prediction at ECMWF. IGARSS 2011Google Scholar
  20. de Rosnay P, Drusch M, Vasiljevic D, Balsamo G, Albergel C, Isaksen L (2012) A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Q J R Meteorol Soc. doi: 10.1002/qj.2023 CrossRefGoogle Scholar
  21. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balsameda M, Balsamo G, Bauer P, Bechtold P, Beljaars A, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Hólm E, Isaksen L, Kållberg P, Köhler M, Marticardi M, McNally A, Monge-Sanz B, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  22. Dharssi I, Bovis K, Macpherson B, Jones C (2011) Operational assimilation of ASCAT surface soil wetness at the met office. Hydrol Earth Syst Sci 15:2729–2746. doi: 10.5194/hess-15-2729-2011 CrossRefGoogle Scholar
  23. Douville H, Mahfouf JF, Beljaars A (2000) Evaluation of optimal interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon Weather Rev 128:1733–1756CrossRefGoogle Scholar
  24. Draper C, Mahfouf JF, Walker JP (2011) Root zone soil moisture from the assimilation of scree-level variables and remotely sensed soil moisture. J Geophys Res 116:d02127. doi: 10.1029/2010JD013829 CrossRefGoogle Scholar
  25. Draper C, Reichle R, De Lannoy G, Liu Q (2012) Assimilation of passive and active microwave soil moisture retrievals. Geophys Res Lett 39:l04401. doi: 10.1029/2011GL050655 CrossRefGoogle Scholar
  26. Drusch M, Viterbo P (2007) Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: a study on the impact on the forecast quality and analyzed soil moisture. Mon Weather Rev 135:300–314CrossRefGoogle Scholar
  27. Drusch M, Vasiljevic D, Viterbo P (2004) ECMWF s global snow analysis: assessment and revision based on satellite observations. J Appl Meteorol 43:1282–1294CrossRefGoogle Scholar
  28. Drusch M, Scipal K, de Rosnay P, Balsamo G, Andersson E, Bougeault P, Viterbo P (2009) Towards a Kalman filter based soil moisture analysis system for the operational ECMWF Integrated Forecast System. Geophys Res Lett 36:110401. doi: 10.1029/2009GL037716 CrossRefGoogle Scholar
  29. Dutra E, Balsamo G, Viterbo P, Miranda P, Beljaars A, Schär C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11:899–916. doi: 10.1175/2010JHM1249.1 CrossRefGoogle Scholar
  30. ECMWF (2012) IFS documentation Cy37r2 operational implementation 18 May 2011. available at http://www.ecmwfint/research/ifsdocs/CY37r2
  31. Entekhabi D, Asrar G, Betts A, Beven K, Bras R, Duffy C, Dunne T, Koster R, Lettenmaier D, DB ML, Shuttleworth W, van Genuchten M, Wei MY, Wood E (1999) An agenda for land surface hydrology research and a call for the second international hydrological decade. Bull Am Meteorol Soc 10:2043–2058CrossRefGoogle Scholar
  32. Entekhabi D, Njoku E, O’Neill P, Kellog K, Crow W, Edelstein W, Entin J, Goodman S, Jackson T, Johnson J, Kimball J, Piepmeier J, Koster R, Martin N, McDonald K, Moghaddam M, Moran S, Reichle R, Shi J, Spencer M, Thurman S, Tsang L, Van Zyl J (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716CrossRefGoogle Scholar
  33. Essery RLH, Rutter N, Pomeroy J, Baxter R, Stähli M, Gustafsson D, Barr A, Bartlett P, Elder K (2009) SNOWMIP2: an evaluation of forest snow process simulations. Bull Am Meteorol Soc 90:1120–1135. doi: 10.1175/2009BAMS2629.1 CrossRefGoogle Scholar
  34. Giard D, Bazile E (2000) Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon Weather Rev 128:997–1015CrossRefGoogle Scholar
  35. Gong G, Entekhabi D, Cohen J, Robinson D (2004) Sensitivity of atmospheric response to modeled snow anomaly characteristics. J Geophys Res 109:d06107. doi: 10.1029/2003JD004160 CrossRefGoogle Scholar
  36. Helfrich SR, McNamara D, Ramsay B, Baldwin T, Kasheta T (2007) Enhancements to, and forthcoming developments in the interactive multisensor snow and ice mapping system, (IMS). Hydrol Process 21:1576–1586. doi: 10.1002/hyp.6720 CrossRefGoogle Scholar
  37. Hess R (2001) Assimilation of screen-level observations by variational soil moisture analysis. Meteorol Atmos Phys 77:145–154CrossRefGoogle Scholar
  38. Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela M, Font J, Reul N, Gruhier C, Juglea S, Drinkwater M, Hahne A, Martín-Neira M, Mecklenburg S (2007) The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687CrossRefGoogle Scholar
  39. Koster R, Mahanama P, Yamada T, Balsamo G, Berg A, Boisserie M, Dirmeyer P, Doblas-Reyes F, Drewitt G, Gordon C, Guo Z, Jeong J, Lee W, Li Z, Luo L, Malyshev S, Merryfield W, Seneviratne S, Stanelle T, van den Hurk B, Vitart F, Wood E (2011) The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J Hydrometeorol 12:805–822CrossRefGoogle Scholar
  40. Koster RD, Suarez MJ (1992) Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J Geophys Res 97:2697–2715CrossRefGoogle Scholar
  41. Koster RD, Dirmeyer P, Guo Z, Bonan G, Cox P, Gordon C, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud Y, Taylor C, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Sciences 305:1138–1140CrossRefGoogle Scholar
  42. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice I (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem Cycles 19:GB1015, 33 pp. doi: 10.1029/2003GB002199
  43. Mahfouf JF (1991) Analysis of soil moisture from near-surface parameters: a feasibility study. J Appl Meteorol 30:1534–1547CrossRefGoogle Scholar
  44. Mahfouf JF (2010) Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Q J R Meteorol Soc 136:784–798. doi: 10.1002/qj.602 CrossRefGoogle Scholar
  45. Mahfouf JF, Viterbo P, Douville H, Beljaars A, Saarinen S (2000) A revised land-surface analysis scheme in the Integrated Forecasting System. ECMWF Newslett 88Google Scholar
  46. Mahfouf JF, Bergaoui K, Draper C, Bouyssel F, Taillefer F, Taseva L (2009) A comparison of two offline soil analysis schemes for assimilation of screen level observations. J Geophys Res 114. doi: 10.1029/2008JD011077
  47. Meng J, Yang R, Wei H, Ek M, Gayno G, Xie P, Mitchell K (2012) The land surface analysis in the NCEP climate forecast system reanalysis. J Hydrometeorol. doi: 10.1175/JHM-D-11-090.1 CrossRefGoogle Scholar
  48. Mueller B, Seneviratne S (2012) Hot days induced by precipitation deficits at the global scale. Proc Nat Acad Sci USA 109(31):12398–12403. doi: 10.1073/pnas.1204330109 CrossRefGoogle Scholar
  49. Pullen S, Jones C, Rooney G (2011) Using satellite-derived snow cover data to implement a snow analysis in the met office NWP model. J Appl Meteorol 50:958–973. doi: 10.1175/2010JAMC2527.1 CrossRefGoogle Scholar
  50. Ramsay B (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12:1537–1546CrossRefGoogle Scholar
  51. Reichle RH, Walker JP, Koster RD, Houser PR (2002) Extended versus ensemble Kalman filtering for land data assimilation. J Hydrometeorol 3:728–740CrossRefGoogle Scholar
  52. Reichle RH, Crow WT, Keppenne CL (2008) An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour Res 44:W03423. doi: 10.1029/2007WR006357 CrossRefGoogle Scholar
  53. Rodell M, Houser P (2004) Updating a land surface model with MODIS-derived snow cover. J Hydrometeorol 5:1064–1075CrossRefGoogle Scholar
  54. Rodríguez A, Navascues B, Ayuso J, Järvenoja S (2003) Analysis of surface variables and parameterization of surface processes in HIRLAM. Part I: approach and verification by parallel runs. HIRLAM technical report No 59, Norrköping, Sweden, 52ppGoogle Scholar
  55. Rott H, Cline D, Duguay C, Essery R, Haas C, Kern M, Macelloni G, Malnes E, Pulliainen J, Rebhan H, et al (2009) CoReH2O—cold regions hydrology high-resolution observatory. 2009 IEEE radar conference. doi: 10.1109/RADAR.2009.4977133
  56. Sabater JM, Fouilloux A, de Rosnay P (2011) Technical implementation of SMOS data in the ECMWF Integrated Forecasting System. IEEE Trans Geosc Remote Sens. doi: 10.1109/LGRS.2011.2164777 CrossRefGoogle Scholar
  57. Scipal K, Drusch M, Wagner W (2008) Assimilation of a ers scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv Water Resour. doi: 10.1016/j.advwatres.2008.04.013 CrossRefGoogle Scholar
  58. Seuffert G, Wilker H, ViterboM P Drusch, Mahfouf JF (2004) The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis. J Hydrometeorol 5:516–531CrossRefGoogle Scholar
  59. Shukla J, Mintz Y (1982) Influence of land-surface evaporation on the Earth’s climate. Science 215:1498–1501CrossRefGoogle Scholar
  60. Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä JP, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115:3517–3529. doi: 10.1016/j.rse.2011.08.014 CrossRefGoogle Scholar
  61. Uppala SM, Kållberg PW, Simmons A, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B, Isaksen L, Janssen P, Jenne R, Mcnally A, Mahfouf JF, Morcrette JJ, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  62. van den Hurk B, Ettema J, Viterbo P (2008) Analysis of soil moisture changes in Europe during a single growing season in a new ECMWF soil moisture assimilation system. J Hydrometeorol 9:116–131. doi: 10.1175/2007JHM848.1 CrossRefGoogle Scholar
  63. Viterbo P, Beljaars ACM (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. Technical report 75, ECMWFGoogle Scholar
  64. Walland DJ, Simmonds I (1997) Modelled atmospheric response to changes in northern hemisphere snow cover. Clim Dyn 13:25–34. doi: 10.1007/s003820050150 CrossRefGoogle Scholar
  65. Weisheimer A, Doblas-Reyes P, Jung T, Palmer T (2011) On the predictability of the extreme summer 2003 over Europe. Geophys Res Lett 38. doi: 10.1029/2010GL046455 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Patricia de Rosnay
    • 1
    Email author
  • Gianpaolo Balsamo
    • 1
  • Clément Albergel
    • 1
  • Joaquín Muñoz-Sabater
    • 1
  • Lars Isaksen
    • 1
  1. 1.European Centre for Medium-Range Weather ForecastsReadingUK

Personalised recommendations