Quantifying and Reducing Uncertainty in the Large-Scale Response of the Water Cycle

  • Gill M. MartinEmail author
Part of the Space Sciences Series of ISSI book series (SSSI, volume 46)


Despite their obvious environmental, societal and economic importance, our understanding of the causes and magnitude of the variations in the global water cycle is still unsatisfactory. Uncertainties in hydrological predictions from the current generation of models pose a serious challenge to the reliability of forecasts and projections across time and space scales. This paper provides an overview of the current issues and challenges in modelling various aspects of the Earth’s hydrological cycle. These include: the global water budget and water conservation, the role of model resolution and parametrisation of precipitation-generating processes on the representation of the global and regional hydrological cycle, representation of clouds and microphysical processes, rainfall variability, the influence of land–atmosphere coupling on rainfall patterns and their variability, monsoon processes and teleconnections, and ocean and cryosphere modelling. We conclude that continued collaborative activity in the areas of model development across timescales, process studies and climate change studies will provide better understanding of how and why the hydrological cycle may change, and better estimation of uncertainty in model projections of changes in the global water cycle.


Hydrological cycle Moisture Precipitation Modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan RP, Slingo A, Milton SF, Brooks ME (2007) Evaluation of the Met Office global forecast model using Geostationary Earth Radiation Budget (GERB) data. Q J R Meteorol Soc 133:1993–2010. doi: 10.1002/qj.166 CrossRefGoogle Scholar
  2. Bechtold P, Chaboureau J-P, Beljaars A, Betts AK, Kohler M, Miller M, Redelsperger J-L (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Q J R Meteorol Soc 130:3119–3137CrossRefGoogle Scholar
  3. Bengtsson L, Koumoutsaris S, Bonnet R, Herland E-A, Huybrechts P, Johannessen O, Milne G, Oerlemans H, Ohmura A, Ramstein G, Woodworth P (eds) (2011) Special issue: ISSI workshop on the earth’s cryosphere and sea level change. Surv Geophys 32:315–657. doi: 10.1007/s10712-011-9136-0 CrossRefGoogle Scholar
  4. Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne J-L, Klein SA, Zhang Y, Marchand R, Haynes JM, Pincus R, John VO (2011) COSP: satellite simulation software for model assessment. Bull Am Meteorol Soc. doi: 10.1175/2011BAMS2856.1 CrossRefGoogle Scholar
  5. Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–222. doi: 10.1038/nature08707 CrossRefGoogle Scholar
  6. Chahine MT, Pagano TS, Aumann HH, Atlas R, Barnet C, Chen L, Divakarla M, Fetzer EJ, Goldberg M, Gautier C, Granger S, Irion FW, Kakar R, Kalnay E, Lambrigtsen BH, Lee SY, Le Marshall J, McMillan W, McMillin L, Olsen ET, Revercomb H, Rosenkranz P, Smith WL, Staelin D, Strow LL, Susskind J, Tobin D, Wolf W (2006) The Atmospheric InfraRed Sounder (AIRS): improving weather forecasting and providing new insights into climate. Bull Am Meteorol Soc 87:911–926. doi: 10.1175/BAMS-87-7-911 CrossRefGoogle Scholar
  7. Clark AJ, Gallus WA, Chen T-C (2007) Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon Weath Rev 135:3456–3473. doi: 10.1175/MWR3467.1 CrossRefGoogle Scholar
  8. Clark RT, Murphy JM, Brown SJ (2010) Do global warming targets limit heatwave risk? Geophys Res Lett 37:L17703. doi: 10.1029/2010GL043898 CrossRefGoogle Scholar
  9. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP, Bitz CM, Lin S-J, Zhang M (2006) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2144–2161CrossRefGoogle Scholar
  10. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-system model: HadGEM2. Geosci Model Dev 4:1051–1075. CrossRefGoogle Scholar
  11. Comer R, Best M (2012). Revisiting GLACE: understanding the role of the land surface in land-atmosphere coupling. J Hydrometeorol (accepted)Google Scholar
  12. Cook BI, Bonan GB, Levis S (2006) Soil moisture feedbacks to precipitation in southern Africa. J Clim 19:4198–4206CrossRefGoogle Scholar
  13. Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the Community Climate System Model. J Clim 17:930–951. doi: 10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2 CrossRefGoogle Scholar
  14. Demory M-E, Vidale PL, Roberts MJ, Berrisford P, Strachan J (2012) The role of horizontal resolution in representing processes that drive the global hydrological cycle. Geophys Res Lett (submitted)Google Scholar
  15. Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. Part I: mean monsoon and daily precipitation. J Clim 14:2381–2403CrossRefGoogle Scholar
  16. Dufresne JL, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled ocean-atmosphere models. J Clim 21:5135–5144. doi: 10.1175/2008JCLI2239.1 CrossRefGoogle Scholar
  17. Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458. doi: 10.1126/science.1212222 CrossRefGoogle Scholar
  18. Field PR, Bodas-Salcedo A, Brooks ME (2011) Using model analysis and satellite data to assess cloud and precipitation in midlatitude cyclones. Q J R Meteorol Soc 137:1501–1515. doi: 10.1002/qj.858 CrossRefGoogle Scholar
  19. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340CrossRefGoogle Scholar
  20. HadGEM2 Development Team: Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez, JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757. doi: 10.5194/gmd-4-723-2011,
  21. Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2011) EC-Earth V2.2: description and validation of a new seamless Earth system prediction model. Clim Dyn (online first 2011). doi: 10.1007/s00382-011-1228-5 CrossRefGoogle Scholar
  22. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi: 10.1175/JCLI3990.1 CrossRefGoogle Scholar
  23. Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen AB, McLaren AJ, Hunke EC (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4:223–253CrossRefGoogle Scholar
  24. Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J Clim 22:5003–5020. doi: 10.1175/2009JCLI2604.1 CrossRefGoogle Scholar
  25. Holland MM, Bailey DA, Briegleb BP, Light D, Hunke E (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic Sea ice. J Clim 25:1413–1430. doi: 10.1175/JCLI-D-11-00078.1 CrossRefGoogle Scholar
  26. Holloway CE, Woolnough SJ, Lister GMS (2012) Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Q J R Meteorol Soc. doi: 10.1002/qj.1903 CrossRefGoogle Scholar
  27. Hong S-Y (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J R Meteorol Soc 136:1481–1496. doi: 10.1002/qj.665 CrossRefGoogle Scholar
  28. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high resolution regional climate model. J Clim 25:5791–5806. doi:  10.1175/JCLI-D-11-00562.1 CrossRefGoogle Scholar
  29. Kim D, Sperber K, Stern W, Waliser D, Kang I-S, Maloney E, Wang, Weickmann K, Benedict J, Khairoutdinov M, Lee M-I, Neale R, Suarez M, Thayer-Calder K, Zhang G (2009) Application of MJO simulation diagnostics to climate models. J Clim 22:6413–6436. doi: 10.1175/2009JCLI3063.1 CrossRefGoogle Scholar
  30. Kim H-J, Wang B, Ding Q (2008) The global monsoon variability simulated by CMIP3 coupled climate models. J Clim 21:5271–5294. doi: 10.1175/2008JCLI2041.1 CrossRefGoogle Scholar
  31. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Davies H, Gordon T, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu S, Malyshev S, McAvaney B, Mitchell K, Oki T, Oleson K, Pitman A, Sud Y, Taylor C, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140CrossRefGoogle Scholar
  32. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  33. Levine RC, Turner AG (2011) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn (online first). doi: 10.1007/s00382-011-1096-z CrossRefGoogle Scholar
  34. Levine RC, Turner AG, Marathayil D, Martin GM (2012) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Clim Dyn (submitted)Google Scholar
  35. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715737. SRefID: 16807324/acp/20055715CrossRefGoogle Scholar
  36. Love BS, Matthews AJ, Lister GMS (2011) The diurnal cycle of precipitation over the maritime continent in a high-resolution atmospheric model. Q J R Meteorol Soc 137:934–947. doi: 10.1002/qj.809 CrossRefGoogle Scholar
  37. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619Google Scholar
  38. Martin GM, Levine RC (2012) The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst Dyn Discuss 3:759–799. doi: 10.5194/esdd-3-759-2012 CrossRefGoogle Scholar
  39. Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The physical properties of the atmosphere in the new Hadley Centre Global Environment Model, HadGEM1. Part I: model description and global climatology. J Clim 19:1274–1301. CrossRefGoogle Scholar
  40. Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modelling weather and climate. J Clim 23:5933–5957. doi: 10.1175/2010JCLI3541.1 CrossRefGoogle Scholar
  41. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S (ed) Climate change 2007, the physical science basis, Chap 10. Cambridge Univ. Press, Cambridge, pp 747–845Google Scholar
  42. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317:1064–1067CrossRefGoogle Scholar
  43. Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20:4884–4898. doi: 10.1175/JCLI4280.1 CrossRefGoogle Scholar
  44. Mukhopadhyay P, Taraphdar S, Goswami, BN, Krishnakumar K (2010) Indian summer monsoon precipitation climatology in a high-resolution regional climate model: impacts of convective parameterization on systematic biases. Weather Forecast 25:369–387. doi: 10.1175/2009WAF2222320.1 CrossRefGoogle Scholar
  45. Pincus R, Batstone CP, Patrick-Hofmann RJ, Taylor KE, Gleckler PE (2008) Evaluating the present-day simulation of clouds, precipitation and radiation in climate models. J Geophys Res 133:D14209. doi: 10.1029/2007JD009334 CrossRefGoogle Scholar
  46. Pritchard MS (2011) Simulated diurnal rainfall physics in a multi-scale global climate model with embedded explicit convection, Ph.D. Thesis, University of California, San Diego, 2011. Available at
  47. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91–94. doi: 10.1038/NGEO1052 CrossRefGoogle Scholar
  48. Randall DA, Wood RA, Bony S, Colman R et al. (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  49. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  50. Roberts MJ, Banks H, Gedney N, Gregory J, Hill R, Mullerworth S, Pardaens A, Rickard G, Thorpe R, Wood R (2004) Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J Clim 17:3–20. doi: 10.1175/1520-0442(2004)017<0003:IOAEOR>2.0.CO;2 CrossRefGoogle Scholar
  51. Rodríguez JM, Johns TC, Thorpe RB, Wiltshire A (2011) Using moisture conservation to evaluate oceanic surface freshwater fluxes in climate models. Clim Dyn (online first). doi: 10.1007/s00382-010-0899-7 CrossRefGoogle Scholar
  52. Rutt IC, Hagdorn M, Hulton NRJ, Payne AJ (2009) The ‘Glimmer’ community ice sheet model. J Geophys Res 114(F2): F02004. doi: 10.1029/2008JF001015
  53. Salzmann M, Ming Y, Golaz J-C, Ginoux PA, Morrison H, Gettelman A, Krämer M, Donner LJ (2010) Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests. Atmos Chem Phys 10:8037–8064. doi: 10.5194/acp-10-8037-2010 CrossRefGoogle Scholar
  54. Scaife AA, Copsey D, Gordon G, Harris C, Hinton T, Keeley SJ, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic blocking in a climate model. Geophys Res Lett 38:L23703. doi: 10.1029/2011GL049573 CrossRefGoogle Scholar
  55. Schaaf CB, Gao F, Strahler AH, Lucht W, Li XW, Tsang T, Strugnell NC et al (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Env 83:135–148CrossRefGoogle Scholar
  56. Schär C, Vidale PL, Lüthi D, Frei C, Häberli CA, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  57. Schlemmer L, Hohenegger C, Schmidli J, Schär C (2012) Diurnal equilibrium convection and land surface–atmosphere interactions in an idealized cloud-resolving model. Q J R Meteorol Soc. doi: 10.1002/qj.1892 CrossRefGoogle Scholar
  58. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209. doi: 10.1038/nature05095 CrossRefGoogle Scholar
  59. Shaffrey LC, Stevens I, Norton W, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory M-E, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) U.K. HiGEM: the new U.K. High-resolution Global Environment Model—model description and basic evaluation. J Clim 22:1861–1896. doi: 10.1175/2008JCLI2508.1 CrossRefGoogle Scholar
  60. Slingo J, Inness P, Neale R, Woolnough S, Yang GY (2003) Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann Geophys 46:139–155Google Scholar
  61. Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz J-C, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res 115:D24211. doi: 10.1029/2010JD014532 CrossRefGoogle Scholar
  62. Stratton RA, Stirling AJ (2011) Improving the diurnal cycle of convection in GCMs. Q J R Meteorol Soc. doi: 10.1002/qj.991 CrossRefGoogle Scholar
  63. Taylor CM (2008) Intraseasonal land–atmosphere coupling in the West African Monsoon. J Clim 21:6636–6648. doi: 10.1175/2008JCLI2475.1 CrossRefGoogle Scholar
  64. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol 8:758–769. doi: 10.1175/JHM600.1 CrossRefGoogle Scholar
  65. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24:4907–4924. doi: 10.1175/2011JCLI4171.1 CrossRefGoogle Scholar
  66. Turner AG, Slingo JM (2011) Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Clim Dyn 36:1717–1735. doi: 10.1007/s00382-010-0805-3 CrossRefGoogle Scholar
  67. Voldoire A, Sanchez-Gomez E, Salas y Melia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F, (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn (online first). doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  68. Walters DN, Best MJ, Bushell AC, Copsey D, Edwards JM, Falloon PD, Harris CM, Lock AP, Manners JC, Morcrette CJ, Roberts MJ, Stratton RA, Webster S, Wilkinson JM, Willett MR, Boutle IA, Earnshaw PD, Hill PG, MacLachlan C, Martin GM, Moufouma-Okia W, Palmer MD, Petch JC, Rooney GG, Scaife AA, Williams KD (2011) The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci Model Dev 4:919–941. doi: 10.5194/gmd-4-919-2011 CrossRefGoogle Scholar
  69. Wang Y, Zhou L, Hamilton K (2007) Effect of convective entrainment/detrainment on simulation of tropical precipitation diurnal cycle. Mon Weath Rev 135:567–585CrossRefGoogle Scholar
  70. Wang Z, Chang C-P (2012), A numerical study of the interaction between the large-scale monsoon circulation and orographic precipitation over South and Southeast Asia. J Clim 25:2440–2455. doi: 10.1175/JCLI-D-11-00136.1 CrossRefGoogle Scholar
  71. Webb M, Senior C, Bony S, Morcrette JJ (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim Dyn 17:905–922. doi: 10.1007/s003820100157 CrossRefGoogle Scholar
  72. Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor K (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27(1):1738. doi: 10.1007/s0038200601112 CrossRefGoogle Scholar
  73. Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ, Bodas-Salcedo A (2008) PC2: a prognostic cloud fraction and condensation scheme. II: climate model simulations. Q J R Meteorol Soc 134:2109–2125. doi: 10.1002/qj.332 CrossRefGoogle Scholar
  74. Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47:W05301. doi: 10.1029/2010WR010090 CrossRefGoogle Scholar
  75. Wylie D, Jackson DL, Menzel WP, Bates JJ (2005) Trends in global cloud cover in two decades of hirs observations. J Clim 18:3021–3031. doi: 10.1175/JCLI3461.1 CrossRefGoogle Scholar
  76. Yasunari T, Saito K, Takata K (2006) Relative roles of large-scale orography and land surface processes in the global hydroclimate. Part I: impacts on monsoon systems and the tropics. J Hydrometeorol 7:626–641. doi: 10.1175/JHM515.1 CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of United Kingdom 2012

Authors and Affiliations

  1. 1.Met Office Hadley CentreExeterUK

Personalised recommendations