Advertisement

Review of Understanding of Earth’s Hydrological Cycle: Observations, Theory and Modelling

  • Michael Rast
  • Johnny Johannessen
  • Wolfram Mauser
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 46)

Abstract

Water is our most precious and arguably most undervalued natural resource. It is essential for life on our planet, for food production and economic development. Moreover, water plays a fundamental role in shaping weather and climate. However, with the growing global population, the planet’s water resources are constantly under threat from overuse and pollution. In addition, the effects of a changing climate are thought to be leading to an increased frequency of extreme weather causing floods, landslides and drought. The need to understand and monitor our environment and its resources, including advancing our knowledge of the hydrological cycle, has never been more important and apparent. The best approach to do so on a global scale is from space. This paper provides an overview of the major components of the hydrological cycle, the status of their observations from space and related data products and models for hydrological variable retrievals. It also lists the current and planned satellite missions contributing to advancing our understanding of the hydrological cycle on a global scale. Further details of the hydrological cycle are substantiated in several of the other papers in this Special Issue.

Keywords

Earth observation Satellite remote sensing Water cycle Hydrological cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050, ESA Working paper No. 12–03, Agricultural Development Economics Division, Food and Agricultural Organisation of the United Nations, June 2012Google Scholar
  2. Bach H, Mauser W (2003) Methods and examples for remote sensing data assimilation in land surface process modelling. IEEE Trans Geosci Remote Sens (TGARSS) 41(7):1629–1637CrossRefGoogle Scholar
  3. Bach H, Appel F, Rust F, Mauser W (2010) Polar View Snow Service—operational snow cover mapping for downstream Runoff modeling and hydropower predictions. Proceedings of the ESA Living Planet Symposium. ESA Special Publication SP-686, CD-RomGoogle Scholar
  4. Bach H, Migdall S, Spannraft K, Hank T, Mauser W (2012) Potential and challenges of using sentinel-2 for smart farming; sentinel-2 preparatory symposium, ESA–ESRIN, Frascati, Italy, 23–27Google Scholar
  5. Bartsch A, Kidd RA, Pathe C, Scipal K (2007) Satellite radar imagery for monitoring inland wetlands in boreal and sub-arctic environments. Methods 317(3):305–317. doi: 10.1002/aqc.836 CrossRefGoogle Scholar
  6. Botteron C, Dawes N, Leclère J, Skaloud J, Weijs SV, Farine P-A (2013) Soil moisture and snow properties determination with GNSS in alpine environments: challenges, status, and perspectives. Remote Sens 5:3516–3543CrossRefGoogle Scholar
  7. Brenner AC, DiMarzio JP, Zwally HJ (2007) Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans Geosci Remote Sens 45(2). doi: 10.1109/TGRS.2006.887172 CrossRefGoogle Scholar
  8. Brocca L, Melone F, Moramarco T, Morbidelli R (2010a) Spatial-temporal variability of soil moisture and its estimation across scales. Water Resour Res, 46(2), art. no. W02516Google Scholar
  9. Brocca L, Melone F, Moramarco T, Wagner W, Naeimi V, Bartalis Z, Hasenauer S (2010b) Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol Earth Syst Sci Dis 14(10):1881–1893. doi: 10.5194/hess-14-1881-2010 CrossRefGoogle Scholar
  10. Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Plan Sci Lett 298(3–4):263–274. doi: 10.1016/j.epsl.2010.07.035 CrossRefGoogle Scholar
  11. CEOS (2013) The Earth observation handbook—special edition for rio + 20 Updated for 2014. http://www.eohandbook.com
  12. Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the colorado river basin. Clim Change 62:337–363CrossRefGoogle Scholar
  13. Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modelling approaches. Irrigat Drain Syst 19(3):223–249CrossRefGoogle Scholar
  14. Curtis S, Salahuddin A, Adler RF, Huffman GJ, Gu G, Hong Y (2007) Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J Hydrometeorol. doi: 10.1175/JHM601.1 CrossRefGoogle Scholar
  15. DeFries R (2008) Terrestrial vegetation in the coupled human-Earth system: contributions of remote sensing. Ann Rev Environ Resour 2008(33):369–390. doi: 10.1146/annurev.environ.33.020107.113339 CrossRefGoogle Scholar
  16. Dorigo WA, De Jeu R, Chung D, Parinussa R, Liu Y, Wagner W, Fernández-Prieto D (2012) Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett 39:L18405. doi: 10.1029/2012GL052988 CrossRefGoogle Scholar
  17. Doubková M, Wagner W, De Jeu RAM (2011) Water from space: soil moisture and landscape dynamics. WIRADA Science Symposium, MelbourneGoogle Scholar
  18. Doubková M, Van Dijk AIJM, Sabel D, Wagner W, Blöschl G (2012) Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia. Remote Sens Environ 120:188–196CrossRefGoogle Scholar
  19. Dyurgerov MB, Mark FM (2005) Glaciers and the changing Earth system: a 2004 Snapshot. Institute of Arctic and Alpine Research. Occasional paper 58Google Scholar
  20. ESA (2012) The biomass mission. Report for mission selection—ESA SP-1324/1. http://esamultimedia.esa.int/docs/EarthObservation/SP1324-1_BIOMASSr.pdf
  21. ESA (2013) ERS missions, 20 years of observing Earth. ESA SP-1326, ESA Communications, Fletcher K (ed), ISBN 978-92-9221-424-1, Leiden July 2013Google Scholar
  22. Ferguson IM, Maxwell RM (2012) Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. Environ Res Lett 7(2012) 044022 (8pp). doi: 10.1088/1748-9326/7/4/044022 CrossRefGoogle Scholar
  23. Font J, Camps A, Borges A, Martín-Neira M, Boutin J, Reul N, Kerr YH, Hahne A, Mecklenburg S (2010) SMOS: the challenging sea surface salinity measurement from space. Proc IEEE 98:649–665CrossRefGoogle Scholar
  24. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling—review. Int J Climatol 27:1547–1578. doi: 10.1002/joc.1556 CrossRefGoogle Scholar
  25. Frei A, Tedesco M, Lee S, Foster J, Hall DK, Kelly R, Robinson DA (2012) A review of global satellite-derived snow products. Adv Space Res 50:1007–1029CrossRefGoogle Scholar
  26. GCOS (2003) The second report on the adequacy of the global observing systems for climate in support of the UNFCCC. GCOS– 82 (WMO/TD No. 1143) April 2003. (http://www.wmo.int/pages/prog/gcos/Publications/gcos-82_2AR.pdf)
  27. Helsen MM, van den Broeke MR, van de Wal RSW, van de Berg WJ, van Meijgaard E, Davis CH, Li Y, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Science 320:1626–1629CrossRefGoogle Scholar
  28. Hibbard K, Janetos A, van Vuuren DP, Pongratz J, Rose SK, Betts R, Herold M, Feddema JJ (2010) Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling. Int J Climatol 30: 2118–2128. doi: 10.1002/joc.2150 CrossRefGoogle Scholar
  29. Hornacek M, Wagner W, Sabel D, Truong H, Snoeij P, Hahmann T, Diedrich E et al (2012) Potential for high resolution systematic global surface soil moisture retrieval via change detection using sentinel-1. IEEE J Sel Top Appl Earth Observation Remote Sens 5(4):1303–1311CrossRefGoogle Scholar
  30. IGOS (2007) Integrated Global Observing Strategy Cryosphere Theme Report, August 2007, WMO/TD No 1405Google Scholar
  31. Jiménez C et al (2011) Global intercomparison of 12 land surface heat flux estimates. J Geophys Res 116:D02102. doi: 10.1029/2010JD014545 CrossRefGoogle Scholar
  32. Kalma JT, McVicar M, McCabe M (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys Geophys 29(4):421–469CrossRefGoogle Scholar
  33. Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela MJ et al (2010) The SMOS L: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687CrossRefGoogle Scholar
  34. Le Vine DM, Lagerloef GSE, Torrusio SE (2010) Aquarius and remote sensing of sea surface salinity from Space. Proceedings of the IEEE 98(5) 688–703. doi: 10.1109/JPROC.2010.2040550 CrossRefGoogle Scholar
  35. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. Climate Change: the physical science basis; summary for policymakers, technical summary and frequently asked questions. Part of the Working Group I contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ISBN: 92-9169-121-6. hdl:10013/epic.30870Google Scholar
  36. Liu YY, Parinussa RM, Dorigo WA, De Jeu RAM, Wagner WM, Van Dijk AIJ, McCabe MF et al (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15(2):425–436CrossRefGoogle Scholar
  37. Loew A, Ludwig R, Mauser W (2006) Derivation of surface soil moisture from ENVISAT ASAR WideSwath and image mode data in agricultural areas. IEEE Trans Geosci Remote Sens 44(4):889–899CrossRefGoogle Scholar
  38. Loew A, Stacke T, Dorigo W, de Jeu R, Hagemann S (2013) Potential and limitations of multidecadal satellite moisture observations for climate model evaluation studies. Hydrol Earth Syst Sci 17:3523–3542. doi: 10.5194/hess-17-3523-2013 CrossRefGoogle Scholar
  39. Lonfat M, Marks FD, Chen SS (2004) Precipitation distribution in tropical cyclones using the tropical rainfall measuring mission (TRMM) microwave imager: a global perspective. Mon Weather Rev. doi: 10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2 CrossRefGoogle Scholar
  40. Ludwig F, Kabat P, van Schaik H, van der Valk M (eds) (2008) Climate change adaptation in the water sector, Earthscan, LondonGoogle Scholar
  41. Matgen P, Hasenauer S, Hissler C, Brocca L, Hoffmann L, Wagner W, Savenije HHG (2011) On the potential of MetOp ASCAT-derived soil wetness data hydrological monitoring and due to limited prediction: SAR evaluation over Luxembourg lack of coverage. Hydrol Process. doi: 10.1002/hyp CrossRefGoogle Scholar
  42. Mauser W (2009) Water resources: efficient, sustainable and equitable use, the sustainability project. House Publishing, LondonGoogle Scholar
  43. Mauser W, Bach H (2009) PROMET—large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. J Hydrol 376(2009):362–377. doi: 10.1016/j.jhydrol.2009.07.046 CrossRefGoogle Scholar
  44. McNamara JP, Kane DL, Hinzman LD (1999) An analysis of an arctic channel network using digital elevation model. Geomorphology 29:339–353CrossRefGoogle Scholar
  45. Meier P, Frömelt A, Kinzelbach W (2011) Hydrological real-time modelling in the Zambezi river basin using satellite-based soil moisture and rainfall data. Hydrol Earth Syst Sci 15(3):999–1008. doi: 10.5194/hess-15-999-2011 CrossRefGoogle Scholar
  46. Meyssignac B, Cazenave A (2012) Sea level: a review of present-day and recent-past changes and variability. J Geodyn 58:96–109CrossRefGoogle Scholar
  47. Monteith JL (1965) Evaporation and Environment. In: The state and movement of water in living organism. 19th Symp Soc Exptl Biol 205–234Google Scholar
  48. Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ, Fisher JB, Jung M, Ludwig F, Maignan F, Miralles D, McCabe MF, Reichstein M, Sheffield J, Wang KC, Wood EF, Zhang Y, Seneviratne SI (2013) Benchmark products for land evapotranspiration: landFlux-EVAL multi-dataset synthesis. Hydrol Earth Syst Sci 17:3707–3720CrossRefGoogle Scholar
  49. Naeimi V, Bartalis Z, Wagner W (2009) ASCAT soil moisture: an assessment of the data quality and consistency with the ERS scatterometer heritage. J Hydrometeorol 10(2):555–563CrossRefGoogle Scholar
  50. Nghiem S, Tsai W-Y (2001) Global snow cover monitoring with space-borne Ku-band scatterometer. IEEE Trans Geosci Remote Sens 39(10):2118–2134CrossRefGoogle Scholar
  51. Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229CrossRefGoogle Scholar
  52. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. doi: 10.1126/science.1128845 CrossRefGoogle Scholar
  53. Parajka J, Naeimi V, Blöschl G, Wagner W, Merz R, Scipal K (2006) Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrol Earth Syst Sci 10(3):353–368. doi: 10.5194/hess-10-353-2006 CrossRefGoogle Scholar
  54. Pathe C, Wagner W, Sabel D, Doubkova M, Basara J (2009) Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Trans Geosci Remote Sens 47(2):468–480CrossRefGoogle Scholar
  55. Penman HL (1948) Natural evaporation from open water, bare soil and grass. P Roy Soc Lon Ser- A 193(1032):120–145CrossRefGoogle Scholar
  56. Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudre N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. PNAS 104(39): 15242–15247. doi: 10.1073/pnas.0707213104 CrossRefGoogle Scholar
  57. Prasch M, Mauser W, Weber M (2013) Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. The Cryosphere 7:889–904. doi: 10.5194/tc-7-889-2013 CrossRefGoogle Scholar
  58. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat fluxes and evaporation using large scale parameters. Mon Weather Rev 100:81–92CrossRefGoogle Scholar
  59. Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112(D12):1993–2000. doi: 10.1029/2006JD007847 CrossRefGoogle Scholar
  60. Ramamoorthi AS (1983) Snow-melt run-off studies using remote sensing data. Proceedings of the Indian Academy of Sciences, Section C: Engineering Sciences, Sept 1983, 6(3): 279–286. doi: 10.1007/BF02842888
  61. Reul N, Fournier S, Boutin J, Hernandez O, Maes C, Chapron B, Alory G, Quilfen Y, Tenerelli J, Morisset S, Kerr Y, Mecklenburg S, Delwart S (2013) Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle. Surv Geophys. doi: 10.1007/s10712-013-9244-0 CrossRefGoogle Scholar
  62. Richter K, Hank T, Voulo F, Mauser W, D’Urso G (2012) Optimal exploitation of the sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens 4(3):561–582CrossRefGoogle Scholar
  63. Rignot E, MacAyeal DR (1998) Ice-shelf dynamics near the front of the Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometry. J Glaciol 44(147):405–418CrossRefGoogle Scholar
  64. Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1–4):245–256. doi: 10.1016/S0022-1694(02)00060-4 CrossRefGoogle Scholar
  65. Rodriguez JM, Ustin SL, Riano D (2011) Contributions of imaging spectroscopy to improve estimates of evapotranspiration. Hydrol Process 25:4069–4081. doi: 10.1002/hyp.8368 CrossRefGoogle Scholar
  66. Rott (2013) Contribution to EO sentinel convoy—ocean and ice theme final report, produced under ESA contract, ESA, Astrium Limited Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, UKGoogle Scholar
  67. Rott H, Siegel A (1997) Glaciological studies in the alps and in Antarctica using ERS interferometric SAR. ESA SP-406: Conference proceedings of Fringe’96 (Zürich, Switzerland 30 Sept–2 Oct). European Space AgencyGoogle Scholar
  68. Schlüssel P, Soloviev AV, Emery WJ (1997) Cool and freshwater skin of the ocean during rainfall. Bound-Layer Meteorol 82(3):439–474CrossRefGoogle Scholar
  69. Schmitt RW (1995) The ocean component of the global water cycle: US National Report to International Union of Geodesy and Geophysics, 1991–1994. Rev Geophys 33(Supplement):1395–1409CrossRefGoogle Scholar
  70. Schmitt RW (2008) Salinity and the global water cycle. Oceanography 21(1):12CrossRefGoogle Scholar
  71. Shepherd A, Wingham D (2002) Recent Sea-level contributions of the Antarctic and Greenland Ice Sheets. Science 315:1529–1533. doi: 10.1126/science.1136776 CrossRefGoogle Scholar
  72. Shepherd A, Ivins ER, Valentina GA, Barletta R, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin NH, Jacobs S, Joughin I, King Lenaerts, JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ, (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183. doi: 10.1126/science.1228102 CrossRefGoogle Scholar
  73. Soloviev A, Lukas R (1996) Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific Warm Pool. J Phys Oceanogr. doi: 10.1175/1520-0485(1996 CrossRefGoogle Scholar
  74. Strengers BJ, Müller C, Schaeffer M, Haarsma RJ, Severijns C, Gerten D, Schaphoff S, van den Houdt R, Oostenrijk R (2010) Assessing 20th century climate–vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation–climate model. Int J Climatol 30:2055–2065. doi: 10.1002/joc.2132 CrossRefGoogle Scholar
  75. Su Z, Wen J, Wagner W (2010) Advances in land surface hydrological processes—field observations, modeling and data assimilation. Hydrol Earth Syst Sci 14:365–367. www.hydrol-earth-syst-sci.net/14/365/2010/
  76. Turner K, Georgiou S, Clark R, Brouwer R, Burke K (2004) Economic valuation of water resources in agriculture, FAO Water Reports 27. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  77. Van Dijk AIJM, Renzullo LJ (2011) Water resource monitoring systems and the role of satellite observations. Hydrol Earth Syst Sci 15(1):39–55. doi: 10.5194/hess-15-39-201 CrossRefGoogle Scholar
  78. Wagner W, Lemoine G, Rott H (1999) A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens Environ 70(2):191–207CrossRefGoogle Scholar
  79. Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration. Rev Geophys 50(2): RG2005. doi: 10.1029/2011RG000373
  80. Wijesekera HW, Paulson CA, Huyer A (1999) The effect of rainfall on the surface layer during a Westerly Wind Burst in the Western Equatorial Pacific. J Phys Oceanogr. doi: 10.1175/1520-0485 CrossRefGoogle Scholar
  81. Wingham DJ, Francis CR, Baker S, Bouzinac C, Brockley D, Cullen R, de Chateau-Thierry P, Laxon SW, Mallow U, Mavrocordatos B, Phalippou L, Ratier G, Rey L, Rostan F, Viau P, Wallis DW (2006) CryoSat: a mission to determine the fluctuations in Earth’s land and marine ice fields. Adv Space Res 37(4):841–871CrossRefGoogle Scholar
  82. Wood EF, Roundy JK, Troy TJ, van Beek R, Bierkens M, Blyth E, de Roo A, Doell P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffe P, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyper-resolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47:W05301. doi: 10.1029/2010WR010090 CrossRefGoogle Scholar
  83. Zabel F, Mauser W (2013) 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol Earth Syst Sci 17:1705–1714. doi: 10.5194/hess-17-1705-2013 CrossRefGoogle Scholar
  84. Zhang T, Barry RG, Haeberli W (2001) Numerical simulation of the influence of the seasonal snow cover on the occurrence of permafrost at high latitudes. Nor Geogr Tidsskr 55(2001):261–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michael Rast
    • 1
  • Johnny Johannessen
    • 2
  • Wolfram Mauser
    • 3
  1. 1.ESA/ESRINFrascatiItaly
  2. 2.Nansen Environmental & Remote Sensing Center (NERSC)BergenNorway
  3. 3.Ludwig Maximilian University of MunichMunichGermany

Personalised recommendations