Irrigation Effects on Hydro-Climatic Change: Basin-Wise Water Balance-Constrained Quantification and Cross-Regional Comparison

  • Shilpa M. AsokanEmail author
  • Georgia Destouni
Part of the Space Sciences Series of ISSI book series (SSSI, volume 46)


Hydro-climatic changes driven by human land and water use, including water use for irrigation, may be difficult to distinguish from the effects of global, natural and anthropogenic climate change. This paper quantifies and compares the hydro-climatic change effects of irrigation using a data-driven, basin-wise quantification approach in two different irrigated world regions: the Aral Sea drainage basin in Central Asia and the Indian Mahanadi River Basin draining into the Bay of Bengal. Results show that irrigation-driven changes in evapotranspiration and latent heat fluxes and associated temperature changes at the land surface may be greater in regions with small relative irrigation impacts on water availability in the landscape (here represented by the Mahanadi River Basin) than in regions with severe such impacts (here represented by the Aral region). Different perspectives on the continental part of Earth’s hydrological cycle may thus imply different importance assessments of various drivers and impacts of hydro-climatic change. Regardless of perspective, however, actual basin-wise water balance constraints should be accounted to realistically understand and accurately quantify continental water change.


Hydro-climatic change Irrigation Evapotranspiration Surface temperature Hydrological cycle Hydrological catchment Aral Sea India 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asokan SM (2005) Water resources analysis under projected climate conditions in the Mahanadi River Basin, India, Master thesis No. WM-04-13, Asian Institute of Technology, ThailandGoogle Scholar
  2. Asokan SM, Jarsjö J, Destouni G (2010) Vapor flux by evapotranspiration: effects of changes in climate, land use and water use. J Geophys Res 115:D24102. doi: 10.1029/2010JD04417 CrossRefGoogle Scholar
  3. Bengtsson L (2010) The global atmospheric water cycle. Environ Res Lett 5:025001. doi: 10.1088/1748-9326/5/2/025001 CrossRefGoogle Scholar
  4. Bonfils C, Lobell D (2007) Empirical evidence for a recent slow-down in irrigation-induced cooling. Proc Natl Acad Sci USA 104:13,582–13,587. doi: 10.1073/pnas.0700144104 CrossRefGoogle Scholar
  5. Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapor and climate. Clim Dyn 22:597–603. doi: 10.1007/s00382-004-0402-4 CrossRefGoogle Scholar
  6. Cheng L, Xu Z, Wang D, Cai X (2011) Assessing interannual variability of evapotranspiration at the catchment scale using satellite-based evapotranspiration data sets. Water Resour Res 47:W09509, p 11Google Scholar
  7. Darracq A, Greffe F, Hannerz F, Destouni G, Cvetkovic V (2005) Nutrient transport scenarios in a changing Stockholm and Malaren valley region. Sweden Water Sci Technol 51(3–4):31–38CrossRefGoogle Scholar
  8. Destouni G, Darracq A (2009) Nutrient cycling and N2O emissions in a changing climate: the subsurface water system role. Environ Res Lett 4:035008, p 7CrossRefGoogle Scholar
  9. Destouni G, Hannerz F, Prieto C, Jarsjö J, Shibuo Y (2008) Small unmonitored near coastal catchment areas yielding large mass loading to the sea. Global Biogeochem Cycles 22:GB4003, p 10. doi: 10.1029/2008GB003287 CrossRefGoogle Scholar
  10. Destouni G, Asokan SM, Jarsjö J (2010) Inland hydroclimatic interaction: effects of human water use on regional climate. Geophys Res Lett 37:L18402. doi: 10.1029/2010GL044153 CrossRefGoogle Scholar
  11. Destouni G, Jaramillo F, Prieto C (2013) Hydroclimatic shifts driven by human water use for food and energy production. Nat Clim Change. doi: 10.1038/NCLIMATE1719 (in press)
  12. Donohue RJ, Roderick ML, McVicar TR (2007) On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol Earth Syst Sci 11:983–995CrossRefGoogle Scholar
  13. Douglas EM, Niyogi D, Frolking S, Yeluripati JB, Pielke RA, Niyogi N, Vörösmarty CJ, Mohanty UC (2006) Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. RID A-5015-2009. Geophys Res Lett 33, p 5Google Scholar
  14. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(570–574):2005Google Scholar
  15. Gaybullaev B, Chen SC, Kuo YM (2012) Large-scale desiccation of the Aral Sea due to over-exploitation after 1960. J Mt Sci 9:538–546. doi: 10.1007/s11629-012-2273-1 CrossRefGoogle Scholar
  16. Gordon L, Dunlop M, Foran B (2003) Land cover change and water vapour flows: learning from Australia. Philos Trans Biol Sci 358:1973–1984CrossRefGoogle Scholar
  17. Gordon L, Steffen W, Jonsson B, Folke C, Falkenmark M, Johannessen A (2005) Human modification of global water vapor flows from the land surface RID A-4614-2010 RID C-7651-2011. Proc Natl Acad Sci USA 102:7612–7617CrossRefGoogle Scholar
  18. Groves DG, Yates D, Tebaldi C (2008) Developing and applying uncertain global climate change projections for regional water management planning. Water Resour Res 44:W12413. doi: 10.1029/2008WR006964 CrossRefGoogle Scholar
  19. Jarsjö J, Destouni G (2004) Groundwater discharge into the Aral Sea after 1960. J Mar Syst 47:109–120CrossRefGoogle Scholar
  20. Jarsjö J, Asokan SM, Prieto C, Bring A, Destouni G (2012) Hydrological responses to climate change conditioned by historic alterations of land-use and water-use. Hydrol Earth Syst Sci Discuss 8:7595–7620. doi: 10.5194/hessd-8-7595-2011 CrossRefGoogle Scholar
  21. Keiser J, De Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, Utzinger J (2005) Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop Med Hyg 72:392–406CrossRefGoogle Scholar
  22. King M, Kaufman Y, Menzel W, Tanre D (1992) Remote-sensing of cloud, aerosol, and water-vapor properties from the moderate resolution imaging spectrometer (MODIS) RID C-7153-2011 RID B-8306-2011. IEEE Trans Geosci Remote Sens 30:2–27CrossRefGoogle Scholar
  23. Kite GW, Droogers P (2000) Comparing evapotranspiration estimates from satellites, hydrological models and field data. J Hydrol 229:3–18CrossRefGoogle Scholar
  24. Kueppers LM, Snyder MA, Sloan LC (2007) Irrigation cooling effect: regional climate forcing by land-use change. Geophys Res Lett 34:L03703. doi: 10.1029/2006GL028679 CrossRefGoogle Scholar
  25. Kvalevag MM, Myhre G, Bonan G, Levis S (2010) Anthropogenic land cover changes in a GCM with surface albedo changes based on MODIS data RID A-3598-2008. Int J Climatol 30:2105–2117CrossRefGoogle Scholar
  26. Lee E, Sacks WJ, Chase TN, Foley JA (2011) Simulated impacts of irrigation on the atmospheric circulation over Asia. J Geophys Res-Atmos 116:D08114, 30. doi: 10.1029/2010JD014740
  27. Loarie SR, Lobell DB, Asner GP, Mu Q, Field CB (2011) Direct impacts on local climate of sugar-cane expansion in Brazil RID G-5695-2010. Nat Clim Change 1:105–109CrossRefGoogle Scholar
  28. Lobell D, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002. doi: 10.1088/1748-9326/2/1/014002 CrossRefGoogle Scholar
  29. Lobell D, Bala G, Mirin A, Phillips T, Maxwell R, Rotman D (2009) Regional differences in the influence of irrigation on climate. J Clim 22(8):2248–2255. doi: 10.1175/2008JCL12703.1 CrossRefGoogle Scholar
  30. Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517CrossRefGoogle Scholar
  31. Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350CrossRefGoogle Scholar
  32. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  33. Piao S, Friedlingstein P, Ciais P, De Noblet-Ducoudre N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci USA 104:15242–15247CrossRefGoogle Scholar
  34. Qiu GY, Yin J, Tian F, Geng S (2011) Effects of the “Conversion of Cropland to Forest and Grassland Program” on the Water Budget of the Jinghe River Catchment in China. J Environ Qual 40:1745–1755CrossRefGoogle Scholar
  35. Schilling KE, Jha MK, Zhang YK, Gassman PW, Wolter CF (2008) Impact of land use and land cover change on the water balance of a large agricultural watershed: historical effects and future directions. Water Resour Res 44, p 12Google Scholar
  36. Shibuo Y, Jarsjö J, Destouni G (2007) Hydrological responses to climate change and irrigation in the Aral Sea drainage basin. Geophys Res Lett 34:L21406. doi: 10.1029/2007GL031465 CrossRefGoogle Scholar
  37. Törnqvist R, Jarsjö J (2012) Water savings through improved irrigation techniques: basin-scale quantification in semi-arid environments. Water Resour Manage 26:949–962. doi: 10.1007/s11269-011-9819-9 CrossRefGoogle Scholar
  38. Törnqvist R, Jarsjö J, Karimov B (2011) Health risks from large-scale water pollution: trends in Central Asia. Environ Int 37:435–442CrossRefGoogle Scholar
  39. Vanlill W, Kruger F, Vanwyk D (1980) The effect of afforestation with Eucalyptus-Grandis Hill Ex Maiden and Pinus-Patula Schlecht Et Cham on streamflow from experimental catchments. J Hydrol 48:107–118CrossRefGoogle Scholar
  40. Visser A, Kroes J, Van Vliet MTH, Blenkinsop S, Fowler HJ, Broers HP (2012) Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment. J Contam Hydrol 127:47–64. doi: 10.1016/j.jconhyd.2011.04.007 CrossRefGoogle Scholar
  41. Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB (2000) Global system of rivers: its role in organizing continental land mass and defining land-to-ocean linkages. Global Biogeochem Cycles 14:599–621. doi: 10.1029/1999GB900092 CrossRefGoogle Scholar
  42. Weiskel PK, Vogel RM, Steeves PA, Zarriello PJ, DeSimone LA, Ries KG III (2007) Water use regimes: characterizing direct human interaction with hydrologic systems. Water Resour Res 43:W04402. doi: 10.1029/2006WR005062 CrossRefGoogle Scholar
  43. Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century 20 global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol Earth Syst Sci 14:1–24. doi: 10.5194/hess-14-1-2010 CrossRefGoogle Scholar
  44. Zhang K, Kimball JS, Nemani RR, Running SW (2010) A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006 RID B-3227-2012. Water Resour Res 46, p 21Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physical Geography and Quaternary Geology, Bert Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden

Personalised recommendations