Advertisement

Observing Global Surface Water Flood Dynamics

  • Paul D. Bates
  • Jefferey C. Neal
  • Douglas Alsdorf
  • Guy J.-P. Schumann
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 46)

Abstract

Flood waves moving along river systems are both a key determinant of globally important biogeochemical and ecological processes and, at particular times and particular places, a major environmental hazard. In developed countries, sophisticated observing networks and ancillary data, such as channel bathymetry and floodplain terrain, exist with which to understand and model floods. However, at global scales, satellite data currently provide the only means of undertaking such studies. At present, there is no satellite mission dedicated to observing surface water dynamics and, therefore, surface water scientists make use of a range of sensors developed for other purposes that are distinctly sub-optimal for the task in hand. Nevertheless, by careful combination of the data available from topographic mapping, oceanographic, cryospheric and geodetic satellites, progress in understanding some of the world’s major river, floodplain and wetland systems can be made. This paper reviews the surface water data sets available to hydrologists on a global scale and the recent progress made in the field. Further, the paper looks forward to the proposed NASA/CNES Surface Water Ocean Topography satellite mission that may for the first time provide an instrument that meets the needs of the hydrology community.

Keywords

Floods Surface water Floodplains Rivers Wetlands Remote sensing Surface water ocean topography (SWOT) mission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhikari P, Hong Y, Douglas KR, Kirschbaum D, Gourley JJ, Adler RF, Brakenridge GR (2010) A digitized global flood inventory (1998–2008): compilation and preliminary results. Nat Hazards 55:405–422CrossRefGoogle Scholar
  2. Alsdorf DE, Melack JM, Dunne T, Mertes LAK, Hess LL, Smith LC (2000) Interferometric radar measurements of water level changes on the Amazon floodplain. Nature 404:174–177CrossRefGoogle Scholar
  3. Alsdorf D, Birkett C, Dunne T, Melack J, Hess L (2001a) Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys Res Lett 28:2671–2674CrossRefGoogle Scholar
  4. Alsdorf DE, Smith LC, Melack JM (2001b) Amazon water level changes measured with interferometric SIR-C radar. IEEE Trans Geosci Remote Sens 39:423–431CrossRefGoogle Scholar
  5. Alsdorf DE, Rodriguez E, Lettenmaier D (2007a) Measuring surface water from space. Rev Geophys 45(2):RG2002CrossRefGoogle Scholar
  6. Alsdorf DE, Bates PD, Melack JM, Wilson MD, Dunne T (2007b) The spatial and temporal complexity of the Amazon flood measured from space. Geophys Res Lett 34:L08402CrossRefGoogle Scholar
  7. Alsdorf D, Han S-C, Bates P, Melack J (2010) Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ 114:2448–2456CrossRefGoogle Scholar
  8. Andreadis KM, Clark EA, Lettenmaier DP, Alsdorf DE (2007) Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys Res Lett 34. Paper no L10403Google Scholar
  9. Baltsavias EP (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54(2–3):83–94CrossRefGoogle Scholar
  10. Bates PD, Horritt M, Smith C, Mason D (1997) Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol Process 11:1777–1795CrossRefGoogle Scholar
  11. Bates PD, Stewart MD, Siggers GB, Smith CN, Hervouet J-M, Sellin RHJ (1998) Internal and external validation of a two-dimensional finite element model for river flood simulation. Proc Inst Civ Eng Water Marit Energy 130:127–141CrossRefGoogle Scholar
  12. Bates PD, Horritt MS, Aronica G, Beven K (2004) Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrol Process 18:3347–3370CrossRefGoogle Scholar
  13. Bates PD, Wilson MD, Horritt MS, Mason D, Holden N, Currie A (2006) Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. J Hydrol 328:306–318CrossRefGoogle Scholar
  14. Beighley RE, Dunne T, Melack JM (2008) Impacts of climate variability and land use alterations on frequency distributions of terrestrial runoff loading to coastal waters in southern California. J Am Water Resour Assoc 44(1):62–74CrossRefGoogle Scholar
  15. Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32 (16), article no. L16401Google Scholar
  16. Biancamaria S, Andreadis KM, Durand M, Clark EA, Rodriguez E, Mognard NM, Alsdorf DE, Lettenmaier DP, Oudin Y (2010) Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE JSTARS 3(1):6–19Google Scholar
  17. Biancamaria S, Durand M, Andreadis K, Bates PD, Boone A, Mognard NM, Rodriguez E, Alsdorf DE, Lettenmaier D, Clark E (2011) Assimilation of virtual wide swath altimetry to improve Arctic river modelling. Remote Sens Environ 115(2):373–381CrossRefGoogle Scholar
  18. Biggin DS, Blyth K (1996) A comparison of ERS-1 satellite radar and aerial photography for river flood mapping. J Chart Inst Water Eng Manag 10:59–64CrossRefGoogle Scholar
  19. Birkett C, Reynolds C, Beckley B, Doorn B (2011) From research to operations the USDA global reservoir and lake monitor. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, New York, pp 19–50CrossRefGoogle Scholar
  20. Bjerklie DM, Dingman SL, Vorosmarty CJ, Bolster CH, Congalton RG (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278:17–38CrossRefGoogle Scholar
  21. Cvetkovic V, Carstens C, Selroos J-O, Destouni G (2012) Water and solute transport along hydrological pathways. Water Resour Res 48:W06537Google Scholar
  22. Destouni G, Persson K, Prieto C, Jarsjö J (2010) General quantification of catchment-scale nutrient and pollutant transport through the subsurface to surface and coastal waters. Environ Sci Technol 44:2048–2055CrossRefGoogle Scholar
  23. Destouni G, Jaramillo F, Prieto C (2013) Hydroclimatic shifts driven by human water use for food and energy production. Nat Clim Change 3:213–217CrossRefGoogle Scholar
  24. Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: a quantitative analysis. Hydrol Earth Syst Sci 13:913–921CrossRefGoogle Scholar
  25. Di Baldassarre G, Schumann G, Bates PD (2009) Near real time satellite imagery to support and verify timely flood modelling. Hydrol Process 23:799–803CrossRefGoogle Scholar
  26. Durand M, Andreadis KM, Alsdorf DE, Lettenmaier DP, Moller D, Wilson M (2008) Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys Res Lett 35:L20401CrossRefGoogle Scholar
  27. Durand M, Rodriguez E, Alsdorf DE, Trigg M (2010) Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width. IEEE J Sel Top Appl Earth Obs Remote Sens 3(1):20–31CrossRefGoogle Scholar
  28. Durand M, Neal J, Rodríguez E, Andreadis K, Smith L, Yoon Y (submitted) Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope. J HydrolGoogle Scholar
  29. Falorni G, Teles V, Vivoni ER, Bras RL, Amaratunga KS (2005) Analysis and characterization of the vertical accuracy of digital elevation models from the shuttle radar topography mission. J Geophys Res 110:F02005CrossRefGoogle Scholar
  30. Farr TG, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Rosen P, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Burbank D, Oskin M, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):RG2004CrossRefGoogle Scholar
  31. Fekete BM, Looser U, Pietroniro A, Robarts RD (2012) Rationale for monitoring discharge on the ground. J Hydrometeorol 13(6):1977–1986CrossRefGoogle Scholar
  32. Frey KE, Smith LC (2005) Amplified carbon release from vast west Siberian peatlands by 2100. Geophys Res Lett 32:L09401Google Scholar
  33. García-Pintado J, Neal JC, Mason DC, Dance S, Bates PD (2013) Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling. J Hydrol 495:252–266CrossRefGoogle Scholar
  34. Giustarini L, Hostache R, Matgen P, Schumann G, Bates PD, Mason DC (2013) A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 51(4):2417–2430CrossRefGoogle Scholar
  35. Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262:1525–1530CrossRefGoogle Scholar
  36. Gomes-Pereira LM, Wicherson RJ (1999) Suitability of laser data for deriving geographical data: a case study in the context of management of fluvial zones. Photogramm Remote Sens 54:105–114CrossRefGoogle Scholar
  37. Guha-Sapir D, Vos F, Below R, Ponserre S (2012) Annual disaster statistical review 2011: the numbers and trends. CRED, Brussels, 52 ppGoogle Scholar
  38. Hall AC, Schumann GJ-P, Bamber JL, Bates PD, Trigg MA (2012) Geodetic corrections to Amazon River water level gauges using ICESat altimetry. Water Resour Res 48. Paper W06602Google Scholar
  39. Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major South American floodplains. J Geophys Res Atmos 107(D20). Article no 8308Google Scholar
  40. Hodgson ME, Jensen JR, Schmidt L, Schill S, Davis B (2003) An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sens Environ 84(2):295–308CrossRefGoogle Scholar
  41. Horritt MS (2000) Calibration of a two-dimensional finite element flood flow model using satellite radar imagery. Water Resour Res 36(11):3279–3291CrossRefGoogle Scholar
  42. Hostache R, Lai X, Monnier J, Puech C (2010) Assimilation of spatially distributed water levels into a shallow-water flood model. Part II: use of a remote sensing image of Mosel River. J Hydrol 390(3–4):257–268. doi: 10.1016/j.jhydrol.2010.07.003 CrossRefGoogle Scholar
  43. Hunter NM, Bates PD, Horritt MS, Wilson MD (2007) Simple spatially-distributed models for predicting flood inundation: a review. Geomorphology 90:208–225CrossRefGoogle Scholar
  44. Jung HC, Jasinski M, Kim J-W, Shum CK, Bates P, Neal J, Lee H, Alsdorf D (2012) Calibration of two-dimensional floodplain modeling in the Atchafalaya River Basin using SAR interferometry. Water Resour Res 48. Paper W07511Google Scholar
  45. Knight DW, Shiono K (1996) River channel and floodplain hydraulics. In: Anderson MG, Walling DE, Bates PD (eds) Floodplain processes. Wiley, Chichester, pp 139–182Google Scholar
  46. Krabill WB, Collins JG, Link LE, Swift RN, Butler ML (1984) Airborne laser topographic mapping results. Photogramm Eng Remote Sens 50:685–694Google Scholar
  47. Lai X, Monnier J (2009) Assimilation of spatially distributed water levels into a shallow-water flood model. Part I: Mathematical method and test case. J Hydrol 377(1–2):1-11. doi: 10.1016/j.jhydrol.2009.07.058, ISSN:0022-1694CrossRefGoogle Scholar
  48. Lane SN (2000) The measurement of river channel morphology using digital photogrammetry. Photogramm Rec 16(96):937–957CrossRefGoogle Scholar
  49. Lyon SW, Mörth M, Humborg C, Giesler R, Destouni G (2010) The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-Arctic catchment. Hydrol Earth Syst Sci 14:941–950CrossRefGoogle Scholar
  50. Marcus WA, Fonstad MA (2008) Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf Proc Land 33:4–24CrossRefGoogle Scholar
  51. Mason DM, Horritt MS, Dall’Amico JT, Scott TR, Bates PD (2007) Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. IEEE Trans Geosci Remote Sens 45(12):3932–3943CrossRefGoogle Scholar
  52. Mason DC, Bates PD, Dall’Amico JT (2009) Calibration of uncertain flood inundation models using remotely sensed water levels. J Hydrol 368:224–236CrossRefGoogle Scholar
  53. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142CrossRefGoogle Scholar
  54. Matgen P, Schumann G, Henry J, Hoffmann L, Pfister L (2007) Integration of SAR-derived inundation areas, high precision topographic data and a river flow model toward real-time flood management. Int J Appl Earth Obs Geoinf 9(3):247–263CrossRefGoogle Scholar
  55. Mertes LAK et al (1995) Spatial patterns of hydrology, geomorphology and vegetation on the floodplain of the Amazon River in Brazil: a remote sensing perspective. Geomorphology 13:215–232CrossRefGoogle Scholar
  56. Mertes LAK, Dunne T, Martinelli LA (1996) Channel–floodplain geomorphology along the Solimoes-Amazon River, Brazil. Geol Soc Am Bull 108(9):1089–1107CrossRefGoogle Scholar
  57. Neal J, Schumann G, Bates P, Buytaert W, Matgen P, Pappenberger F (2009) A data assimilation approach to discharge estimation from space. Hydrol Process 23(25):3641–3649CrossRefGoogle Scholar
  58. Neal J, Schumann GJ-P, Bates PD (2012) A simple model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour Res 48. Paper no W11506Google Scholar
  59. NERC (1975) Flood studies report, 5 volumes. Natural Environment Research Council, LondonGoogle Scholar
  60. Nicholas AP, Mitchell CA (2003) Numerical simulation of overbank processes in topographically complex floodplain environments. Hydrol Process 17(4):727–746CrossRefGoogle Scholar
  61. O’Loughlin F, Schumann GJ-P, Trigg M, Bates PD (2013) Hydraulic characterization of the middle reach of the Congo River. Water Resour Res 49(8):5059–5070CrossRefGoogle Scholar
  62. Paiva RCD, Collischonn W, Tucci CEM (2011) Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. J Hydrol 406(3–4):170–181CrossRefGoogle Scholar
  63. Paiva RCD, Collischonn W, Buarque DC (2013) Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon. Hydrol Process 27(3):333–346CrossRefGoogle Scholar
  64. Paz AR, Bravo JM, Allasia D, Collischonn W, Tucci CEM (2010) Large-scale hydrodynamic modeling of a complex river network and floodplains. J Hydrol Eng 15(2):152–165CrossRefGoogle Scholar
  65. Pelletier MP (1987) Uncertainties in the determination of river discharge: a literature review. Can J Civ Eng 15:834–850CrossRefGoogle Scholar
  66. Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112:D12107CrossRefGoogle Scholar
  67. Richey JE, Mertes LAK, Dunne T, Victoria RL, Forsberg BR, Tancredi ACNS, Oliveira E (1989) Sources and routing of the Amazon River flood wave. Glob Biogeochem Cycles 3:191–204CrossRefGoogle Scholar
  68. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  69. Rodriguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance. Photogramm Eng Remote Sens 72(3):249–260CrossRefGoogle Scholar
  70. Sanders BF (2007) Evaluation of on-line DEMs for flood inundation modelling. Adv Water Resour 30(8):1831–1843CrossRefGoogle Scholar
  71. Schumann G, Bates PD, Horritt M, Matgen P, Pappenberger F (2009) Progress in integration of remote sensing derived flood extent and stage data and hydraulic models. Rev Geophys 47:RG4001CrossRefGoogle Scholar
  72. Schumann G, Di Baldassarre G, Alsdorf DE, Bates PD (2010) Near real-time flood wave approximation on large rivers from space: application to the River Po, Northern Italy. Water Resour Res 46. Paper no W05601Google Scholar
  73. Schumann GJ-P, Mason DC, Di Baldassarre G, Bates PD (2012) The use of radar imagery in riverine flood inundation studies. In: Piegay H, Carbonneau P (eds) Fluvial remote sensing for science and management. Wiley, Chichester, pp 115–140CrossRefGoogle Scholar
  74. Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439CrossRefGoogle Scholar
  75. Tachikawa T, Kaku M, Iwasaki A, Gesch D, Oimoen M, Zhang Z, Danielson J, Krieger T, Curtis B, Haase J, Abrams M, Crippen R, Carabajal C (2011) ASTER global digital elevation model version 2—summary of validation results. NASA, 27 pp. Available from http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf
  76. Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29(1):308–330Google Scholar
  77. Trigg MA, Bates PD, Wilson MD, Schumann G (2012) Floodplain channel morphology and networks of the middle Amazon River. Water Resour Res 48. Paper no W10504Google Scholar
  78. Turner-Gillespie DF, Smith JA, Bates PD (2003) Attenuating reaches and the regional flood response of an urbanising drainage basin. Adv Water Resour 26:673–684CrossRefGoogle Scholar
  79. Vörösmarty CJ (2002) Global water assessment and potential contributions from earth systems science. Aquat Sci 64(4):328–351CrossRefGoogle Scholar
  80. Westaway RM, Lane SN, Hicks DM (2003) Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis. Int J Remote Sens 24(4):795–815CrossRefGoogle Scholar
  81. Wilson MD, Bates PD, Alsdorf D, Forsberg B, Horritt M, Melack J, Frappart F, Famiglietti J (2007) Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys Res Lett 34. Paper no L15404Google Scholar
  82. Yoon Y, Durand M, Merry CJ, Clark EA, Andreadis KM, Alsdorf DE (2012) Estimating river bathymetry from data assimilation of synthetic SWOT measurements. J Hydrol 464–465:363–375CrossRefGoogle Scholar
  83. Zhuang Q, Melack JM, Zimov S, Walter KM, Butenhoff CL, Khalil MAK (2009) Global methane emissions from wetlands, rice paddies, and lakes. EOS Trans Am Geophys Union 90(5):37–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Paul D. Bates
    • 1
  • Jefferey C. Neal
    • 1
  • Douglas Alsdorf
    • 2
  • Guy J.-P. Schumann
    • 3
  1. 1.School of Geographical SciencesUniversity of BristolBristolUK
  2. 2.Byrd Polar Research Center, School of Earth SciencesThe Ohio State UniversityColumbusUSA
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations