Advertisement

Neurourology pp 177-182 | Cite as

Uro-neurophysiological Evaluation of the Neurogenic Bladder

  • Magdy M. HassounaEmail author
  • Abdullah A. Ghazi
  • Ali J. Alabbad
Chapter

Abstract

Neurophysiological tests are useful in diagnosis of neurogenic bladder. Electromyography (EMG) of the Pelvic Floor and Sphincter Muscles is a useful neurophysiological test in diagnosing lower motor neuron lesions in the sacral segments, it is useful in demonstrating increased external urethral sphincter EMG activity concomitant with detrusor contraction in patients with detrusor sphincter dyssynergia in some patients with Parkinson’s and multiple system atrophy. Nerve conduction studies of pudendal nerve are performed to studies pelvic floor function. The most commonly sacral reflexes tested during neurophysiologic testing of the pelvic floor are the bulbocavernosus reflex and the anal reflex, it tests the integrity of the spinal cord–mediated reflex arc involving Sacral nerves 2–4 and may be absent in the presence of sacral cord or peripheral nerve abnormalities. Sympathetic skin response (SSR) is directly evaluating the pelvic sympathetic innervation include assessment of the urethro-anal and bladder-anal reflexes. It is a useful test in the evaluation of neuropathy involving non-myelinated nerve fibers.

References

  1. 1.
    O’Donnell PD. Electromyography. In: Nitti VW, editor. Practical urodynamics. Philadelphia: Saunders; 1998. p. 65–71.Google Scholar
  2. 2.
    Barrett DM. Disposable (infant) surface electrocardiogram electrodes in urodynamics: a simultaneous comparative study of electrodes. J Urol. 1980;124:663–5.CrossRefGoogle Scholar
  3. 3.
    Vodusek DB. Clinical neurophysiological tests in urogynecology. Int Urogynecol J. 2000;11:333–5.CrossRefGoogle Scholar
  4. 4.
    Podnar S, Vodusek DB. Protocol for clinical neurophysiologic examination of the pelvic floor. Neurourol Urodyn. 2001;20:669–82.CrossRefGoogle Scholar
  5. 5.
    Olsen AL, Benson JT, McClellan E. Urethral sphincter needle electromyography in women: comparison of periurethraland transvaginal approaches. Neurourol Urodyn. 1998;17:531–5.CrossRefGoogle Scholar
  6. 6.
    Podnar S. Neurophysiologic testing in neurogenic bladder dysfunction: practical or academic? Curr Bladder Dysfunct Rep. 2010;5:79–86.CrossRefGoogle Scholar
  7. 7.
    Podnar S, Rodi Z, Lukanovic A, et al. Standardization of anal sphincter EMG: technique of needle examination. Muscle Nerve. 1999;2:400–3.CrossRefGoogle Scholar
  8. 8.
    Podnar S. Electromyography of the anal sphincter: which muscle to examine? Muscle Nerve. 2003;28:377–9.CrossRefGoogle Scholar
  9. 9.
    Fowler CJ, Benson JT, Craggs MD, et al. Clinical neurophysiology. In: Second international consultation on incontinence. Plymouth, MA: Health Publication; 2002. p. 391–424.Google Scholar
  10. 10.
    De EJ, Patel CY, Tharian B, et al. Diagnostic discordance of electromyography (EMG) versus voiding cystourethrogram (VCUG) for detrusor-external sphincter dyssynergy (DESD). Neurourol Urodyn. 2005;24:616–21.CrossRefGoogle Scholar
  11. 11.
    Groutz A, Blaivas JG, Pies C, et al. Learned voiding dysfunction (non-neurogenic, neurogenic bladder) among adults. Neurourol Urodyn. 2001;20:259–68.CrossRefGoogle Scholar
  12. 12.
    Vodušek DB, Amarenco G, Podnar S. Clinical neurophysiological tests. In: Abrams P, Cardozo L, Khoury S, Wein A, editors. Incontinence. 4th ed. Plymouth, UK: Health Publications; 2009. p. 523–40.Google Scholar
  13. 13.
    Allert ML, Jelasic F, Schneider H. Specific EMG finding in cases of neurogenic bladder and rectal disturbances. Paraplegia. 1973;10:262–70.PubMedGoogle Scholar
  14. 14.
    Barber MD, Whiteside JL, Walters MD. Neurophysiologic testing of the pelvic floor. Global Library of Women’s Medicine. Update 2016.Google Scholar
  15. 15.
    Cavalcanti GA, Manzano GM, Giuliano LM, et al. Pudenda nerve latency time in normal women via intravaginal stimulation. Int Braz J Urol. 2006;32:705–12.CrossRefGoogle Scholar
  16. 16.
    Olsen AL, Rao SS. Clinical neurophysiology and electrodiagnostic testing of the pelvic floor. Gastroenterol Clin N Am. 2001;30:33–54.CrossRefGoogle Scholar
  17. 17.
    Tetzschner T, Sorensen M, Lose G, et al. Vaginal pudendal nerve stimulation: a new technique for assessment of pudendal nerve terminal motor latency. Acta Obstet Gynecol Scand. 1997;76:294–9.CrossRefGoogle Scholar
  18. 18.
    Tetzschner T, Sorensen M, Rasmussen OO, et al. Reliability of pudendal nerve terminal motor latency. Int J Color Dis. 1997;12:280–4.CrossRefGoogle Scholar
  19. 19.
    Lefaucheur J, Yiou R, Thomas C. Pudendal nerve terminal motor latency: age effects and technical considerations. Clin Neurophysiol. 2001;112:472–6.CrossRefGoogle Scholar
  20. 20.
    Barnett JL, Hasler WL, Camilleri M. American Gastroenterological Association medical position statement on anorectal testing techniques. American Gastroenterological Association. Gastroenterology. 1999;116:732–60.CrossRefGoogle Scholar
  21. 21.
    Barber MD, Gregory WT. Neurophsiologic testing for pelvic floor disorder. In: Urogynecology and reconstructive pelvic surgery. 4th ed: Saunders; 2015. p. 204.Google Scholar
  22. 22.
    Benson JT. Sacral nerve stimulation results may be improved by electrodiagnositc techniques. Int Urogynecol J. 2000;11:352–7.CrossRefGoogle Scholar
  23. 23.
    Vodusek DB, Janko M, Lokar J. Direct and reflex responses in perineal muscles on electrical stimulation. J Neurol Neurosurg Psychiatry. 1983;46:67–71.CrossRefGoogle Scholar
  24. 24.
    Shimada H, Kihara M, Kosaka S, et al. Comparison of SSR and QSART in early diabetic neuopathy-the value of length-dependent pattern in QSART. Autonom Neurosci. 2001;92:72–5.CrossRefGoogle Scholar
  25. 25.
    Delodovici ML, Fowler CJ. Clinical value of the pudendal somatosensory evoked potential. Electroencephalogr Clin Neurophysiol. 1995;96:509–15.CrossRefGoogle Scholar
  26. 26.
    Podnar S, Vodusek DB, Trsinar B, et al. A method of uroneurophysiological investigation in children. Electroencephalogr Clin Neurophysiol. 1997;104:389–92.CrossRefGoogle Scholar
  27. 27.
    Rapidi CA, Karandreas N, Katsifotis C, et al. A combined urodynamic and electrophysiological study of diabetic cystopathy. Neurourol Urodyn. 2006;25:32–8.CrossRefGoogle Scholar
  28. 28.
    Betts CD, Jones SJ, Fowler CG, et al. Erectile dysfunction in multiple sclerosis. Associated neurological and neurophysiological deficits, and treatment of the condition. Brain. 1994;117:1303–10.CrossRefGoogle Scholar
  29. 29.
    Podnar S. Neurophysiology of the neurogenic lower urinary tract disorders. Clin Neurophysiol. 2007;118:1423–37.CrossRefGoogle Scholar
  30. 30.
    Inoue S, Kawaguchi M, Takashi S, et al. Intraoperative monitoring of myogenic motor-evoked potentials from the external anal sphincter muscle to transcranial electrical stimulation. Spine. 2002;27:454–9.CrossRefGoogle Scholar
  31. 31.
    Brostrom S. Motor evoked potentials from the pelvic floor. Neurourol Urodyn. 2003;22:620–37.CrossRefGoogle Scholar
  32. 32.
    Brostrom S, Jennum P, Lose G. Motor evoked potentials from the striated urethral sphincter: a comparison of concentric needle and surface electrodes. Neurourol Urodyn. 2003b;22:123–9.CrossRefGoogle Scholar
  33. 33.
    Shahani BT, Halperin JJ, Boulu P, et al. Sympathetic skin response—a method of assessing unmyelinated axon dysfunction in peripheral neuropathics. J Neurol Neurosurg Psychiatry. 1984;47:536–42.CrossRefGoogle Scholar
  34. 34.
    Kucera P, Goldenberg Z, Kurca E. Sympathetic skin response: review of the method and its clinical use. Bratisl Lek Listy. 2004;105:108–16.PubMedGoogle Scholar
  35. 35.
    Ueda T, Yoshimura N, Yoshida O. Diabetic cystopathy: relationship to autonomic neuropathy detected by sympathetic skin response. J Urol. 1997;157:2230–7.CrossRefGoogle Scholar
  36. 36.
    Schurch B, Curt A, Rossier AB. The value of sympathetic skin response recording in the assessment of the vesicourethral autonomic nervous dysfunction in spinal cord injured patients. J Urol. 1997;157:2230–3.CrossRefGoogle Scholar
  37. 37.
    Pelliccioni G, Scarpino O. External anal sphincter responses after S3 spinal root surface electrical stimulation. Neurourol Urodyn. 2006;25:788–91.CrossRefGoogle Scholar
  38. 38.
    Huang JC, Deletis V, Vodusek DB, et al. Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery. 1997;41:411–5.CrossRefGoogle Scholar
  39. 39.
    Hansen MV, Ertekin C, Larsson LE. Cerebral evoked potentials after stimulation of the posterior urethra in man. Electroencephalogr Clin Neurophysiol. 1990;77:52–8.CrossRefGoogle Scholar
  40. 40.
    Fitzgerald MP, Koch D, Senka J. Visceral and cutaneous sensory testing in patients with painful bladder syndrome. Neurourol Urodyn. 2005;24:627–32.CrossRefGoogle Scholar
  41. 41.
    Reitz A, Schmid DM, Curt A, et al. Electrophysiological assessment of sensations arising from the bladder are there objective criteria for subjective perceptions? J Urol. 2003a;169:190–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Magdy M. Hassouna
    • 1
    Email author
  • Abdullah A. Ghazi
    • 2
  • Ali J. Alabbad
    • 3
  1. 1.Toronto Western Hospital, University of TorontoTorontoCanada
  2. 2.King Saud Medical CityRiyadhSaudi Arabia
  3. 3.University of TorontoTorontoCanada

Personalised recommendations