Advertisement

Early development of the sofie, Chondrostoma toxostoma

  • Rodolphe E. Gozlan
  • Gordon H. Copp
  • Jean-Noel Tourenq
Part of the Developments in environmental biology of fishes book series (DEBF, volume 19)

Synopsis

The developmental biology of embryos, larvae and juveniles of sofie, Chondrostoma toxostoma, reared from artificial insemination, was examined under controlled laboratory conditions, using both in-vivo and preserved specimens. The complete remodelling process (metamorphosis) was described and interpreted according to the theory of saltatory ontogeny, providing a model within which the highly complex ecological niche and behaviour (habitat use, diet, etc.) of the free embryos and larvae can be evaluated. The sofie ova were relatively opaque and the free embryos presented a small yolksac. Consequently, the free embryo steps were short and the free embryos emerged rapidly from the substratum. The circulatory system appeared early and was simple, which suggests that sofie free embryos require well oxygenated water. The remodelling of the mouth from a superior to inferior position characterised changes in the sofie’s diet during early life history, which is typical of the genus. Differences in development relative to the nase, C. naus, are discussed.

Key words

early intervals of life saltatory ontogeny southern European nase eggs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Abrahams, M.V. 1994. Risk of predation and its influence on the relative competitive abilities of two species of freshwater fishes. Can. J. Fish. Aquat. Sci. 51: 1629–1633.CrossRefGoogle Scholar
  2. Alderdice, D.F. 1985. A pragmatic view of early life history studies of fishes. Trans. Amer. Fish. Soc. 114: 445–451.CrossRefGoogle Scholar
  3. Balon, E.K. 1975. Terminology of intervals in fish development. J. Fish. Res. Board Can. 32: 1663–1670.CrossRefGoogle Scholar
  4. Baton, E.K. 1984. Reflections on some decisive events in the early life of fishes. Trans. Amer. Fish. Soc. 113: 178–185.CrossRefGoogle Scholar
  5. Baton, E.K. (ed.) 1985. Early life histories of fishes: new developmental, ecological, and evolutionary perspectives. Dr W. Junk Publishers, Dorchecht. 280 pp.Google Scholar
  6. Balon, E.K. 1990. Epigenesis of an epigeneticist: the development of some alternative concepts of the early ontogeny and evolution of fishes. Guelph Icthyol. Rev. 1: 1–42.Google Scholar
  7. Bell, K.N.L., P. Pepin and J.A. Brown. 1995. Seasonal, inverse cycling of length and age-at-recruitment in the diadromous gobies Sicydium punctatum and Sicydium antillarum in Dominica, West Indies. Can. J. Fish. Aquat. Sci. 52: 1535–1545.CrossRefGoogle Scholar
  8. Beyer, J.E. 1989. Recruitment stability and survival-simple size-specific theory with examples from the early life dynamics of marine fish. Dana 7: 45–147.Google Scholar
  9. Chappaz, R. 1986. Étude piscicole de la retenue de Sainte Croix-Fontaine l’Evêque, croissance-alimentationreproduction. Thèse de Sème cycle, Université de Provence, St-Charles, Marseille. 193 pp.Google Scholar
  10. Copp, G.H., J.M. Oliver, M. Peiíâz and A.L. Roux. 1991. Juvenile fishes as functional describers of fluvial ecosystem dynamics: applications on the River Rhône, France. Regul. Rivers 6: 135–145.CrossRefGoogle Scholar
  11. Crozier, W.W. and G.J.A. Kennedy. 1995. The relationship between a summer fry (0+) abundance index, derived from semi-quantitative electrofishing, and egg deposition of Atlantic salmon, in the River Buch, Northern Ireland. J. Fish Biol. 47: 1055–1062.CrossRefGoogle Scholar
  12. Delfau, F. 1979. Étude écologique de la faune piscicole de la moyenne Garonne (entre Agen et Moissac). Diplome d’Étude Approfondie, Université Paul Sabatier, Toulouse. 140 pp.Google Scholar
  13. Economou, A.N., C. Daoulas and T. Psarras. 1991. Growth and morphological development of chub, Leusciscus cephalus (L.), during the first year of life. J. Fish Biol. 39: 393–408.CrossRefGoogle Scholar
  14. Eulin, A. and R. Le Cohu. 1998. Epilithic diatom communities during the colonization of artificial substrates in the River Garonne (France). Comparaison with natural communities. Archiv. Hydrobiol. 143: 79–106.Google Scholar
  15. Gozlan, R.E. 1998. Environmental biology of the sofie Chondrostoma toxostoma (Cypinidae), with emphasis on early development. PhD thesis, University of Hertfordshire, Hatfield. 210 pp.Google Scholar
  16. Gozlan, R.E., G.H. Copp and J.-N. Tourenq. 1999. Comparison of growth plasticity in the laboratory and field, and implications for the onset of juvenile development in sofie, Chondrostoma toxostoma. Env. Biol. Fish. 56: 153–165.CrossRefGoogle Scholar
  17. Halaèka, K. and S. Lusk. 1995. Mortality in eggs of nase, Chondrostoma nasus, during incubation. Folia Zool. 44: 51–56.Google Scholar
  18. Hoenig, J.M., P. Pepin and W.D. Lawing. 1990. Estimating relative survival rate for two groups of larval fishes from field data: do older larvae survive better than young? U.S. Fish. Bull. 8: 485–491.Google Scholar
  19. Holden, K.K. and M.N. Bruton. 1994. The early ontogeny of the southern mouthbrooder, Pseudocrenilabrus philander ( Pisces, Cichlidae). Env. Biol. Fish. 41: 311–329.Google Scholar
  20. Houde, E.D. 1994. Differences between marine and freshwater fish larvae: implications for recruitment. ICES J. Mar. Sci. 51: 91–97.CrossRefGoogle Scholar
  21. Kamler, E., H. Keckeis and E. Bauer-Nemeschkal. 1996. Egg energy content and partitioning in a rheophilic cyprinid, Chondrostoma nasus (L.). Pol. Arch. Hydrobiol. 43: 273–281.Google Scholar
  22. Kasumyan, A.O. and V.Y. Ponomarev. 1990. The ontogeny of feeding behavior in relation to natural chemical signals in cyprinid fishes. Voprosy Ikhtiologii 30: 447–456.Google Scholar
  23. Keckeis, H., P. Frankiewicz and F. Sciemer. 1996. The importance of inshore areas for spawning nase Chondrostoma nasus (Cyprinidae) in free-flowing section of a large river (Danube, Austria). Arch. Hydrobiol. Suppl. 113: 51–64.Google Scholar
  24. Kennedy, M. 1969. Spawning and early development of the dace Leuciscus leuciscus (L.). J. Fish Biol. 1: 249–259.CrossRefGoogle Scholar
  25. Kovdé, V. 1992. Early development of the yellow pope, Gymnocephalus schraetser. Folia Zool. 41: 365–377.Google Scholar
  26. Kovâè, V. 1995. Reproductive behaviour and early development of the European mudminnow, Umbra krameri. Folia Zool. 44: 57–80.Google Scholar
  27. Kryzhanovsky, S.C. 1949. Eco-morphological principles in the development of carps, loaches, and catfishes (Cyprinoidei. Siluroidei). Trudy Inst. Morph. Zhiv. Severtsova 1: 5–332.Google Scholar
  28. Luczkovich, J., S.F. Norton and R.J.G. Gilmore. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Env. Biol. Fish. 44: 79–95.CrossRefGoogle Scholar
  29. Lusk, S. 1995. Influence of valley dams on the changes in fish communities inhabiting streams in the Dyje River drainage area. Folia Zool. 44: 45–56.Google Scholar
  30. Maier, K.J., M. Zeh, J. Ortlepp and S. Zbinden. 1995. Distribution et reproduction des espèces du genre Chondrostoma en Suisse: le nase (C. nasus), la sofie (C. toxostoma), la savetta (C. saetta). Edited by the Office Fédéral de l’Environnement des Fôrets et du Paysage (O.F.E.F.P.) 53, Bern 53. 62 pp.Google Scholar
  31. Mathias, P. 1921. Étude du genre Chondrostoma dans l’Europe occidentale et la région circum-méditerranéenne. Mémoires de la société zoologique de France 28: 1–52.Google Scholar
  32. Osse, J.W.M. 1990. Form changes in fish larvae in relation to changing demands of function. Neth. J. Zool. 40: 362–385.Google Scholar
  33. Osse, J.W.M. and M.R. Drost. 1989. Hydrodynamics and mechanics of fish larvae. Pol. Arch. Hydrobiol. 36: 455–465.Google Scholar
  34. Paris, P. 1932. Faune de la Saône moyenne (2ème note). Cyclostomes et Poissons. Bulletin Scientifique de Bourgogne 2: 47–54.Google Scholar
  35. Penâz, M. 1974a. Influence of water tempareture on incubation and hatching in Chondrostoma nasus (Linneaus, 1758). Zoologické listy 23: 53–59.Google Scholar
  36. Penâz, M. 1974b. Early development of the nase carp, Chondrostoma nasus (Linnaeus, 1758). Zoologické listy 23: 275–288.Google Scholar
  37. Prokes, M. and M. Penâz. 1978. The course of spawning, early development and longitudinal growth of the nase carp, Chondrostoma nasus, in the Rokytnâ and Jihlava rivers. Folia Zool. 27: 269–278.Google Scholar
  38. Schiemer, F. and T. Spindler. 1989. Endangered fish species of the River Danube in Austria. Regul. Rivers 4: 397–407.Google Scholar
  39. Schneider, A. 1992. Food availability and diet composition of 0+ Chondrostoma nasus in temporally variable environment. Program and Abstract, Ecotones UNESCO Map, Lunz, Vienna.Google Scholar
  40. Spillman, C.J. 1961. Faune de France 65. Poissons d’Eau Douce. Editions Paul Lechevalier. Paris. 303 pp.Google Scholar
  41. Tourenq, J.N. and R.E. Gozlan. 1997. Chondrostoma toxostoma, une espèce en danger. Adour Garonne. Revue de L’Agence de l’Eau 71: 7–10.Google Scholar
  42. Vallot, J.N. 1836. Histoire naturelle des poissons du département de la Côte d’Or. Mémoires de l’Académie des Sciences Arts et belles lettres de Dijon. 236 pp.Google Scholar
  43. Videler, J.J. 1994. Fish swimming. Fish and Fisheries, Chapman and Hall, London. 241 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Rodolphe E. Gozlan
    • 1
    • 2
  • Gordon H. Copp
    • 1
  • Jean-Noel Tourenq
    • 2
  1. 1.Landscape & Ecology Research Group, Department of Environmental SciencesUniversity of HertfordshireHatfield, HertsUK
  2. 2.Centre d’Écologie des Systèmes Aquatiques Continentaux, UMR C5576 — CNRS/UPSUniversité Paul SabatierToulouseFrance

Personalised recommendations