Advertisement

Thyroxine as a mediator of metamorphosis of Atlantic halibut, Hippoglossus hippoglossus

  • Jostein Sigurd Solbakken
  • Birgitta Norberg
  • Kuninori Watanabe
  • Karin Pittman
Part of the Developments in environmental biology of fishes book series (DEBF, volume 19)

Synopsis

The response of morphological, histological and endocrinological development to exogenous 1-thyroxine (T4) and to water depth during metamorphosis in Atlantic halibut, Hippoglossus hippoglossus, was investigated. Exogenous T4 was given in daily doses of 0.1, 0.05 ppm or a control treatment to halibut larvae at 550 daydegrees (posthatch, premetamorphic) for 14 days. Water depths of 40 cm, 10 cm or 1.5 cm were used to rear halibut larvae from 590 daydegrees for 21 days. Halibut larvae given exogenous T4 at 0.1 ppm had accelerated eye migration relative to MH in fish given 0.05 ppm and in control fish. Pigmentation was correlated with dosage after 14 days. The volume of thyroid tissue was expressed in a dose-dependent manner and exhibited a size-dependency within each treatment. However, the follicles were atypical with reduced colloid, increased lumen and low epithelial cells even in the control group. The results indicate that T4 is a mediator in halibut metamorphosis. In the water depth experiment, only cortisol levels of larvae reared in 1.5 cm water were significantly affected after 21 days, but this was not correlated with metamorphic rate. Hormone profiles, morphological changes and size suggest the existence of a ‘window of opportunity’ for metamorphosis in halibut extending from about 16 mm and tapering off about 21 mm SL. The pooled hormone profiles indicate the commencement of a hormonal cascade similar to that of other flatfishes during metamorphosis. The results indicate that growth, neural and skeletal transformation, and pigmentation are biochemically separate processes in the metamorphosis of Atlantic halibut.

Key words

endocrinology histology cortisol thyroid environmental factors window of opportunity larva juvenile aquaculture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Allen, B.M. 1916. The results of extirpation of the anterior lobe of the hypophysis and of the thyroid of Rana pipiens larvae. Science (Washington, D.C.) 44: 755–758.CrossRefGoogle Scholar
  2. Brewster, B. 1987. Eye migration and cranial development during flatfish metamorphosis: a reappraisal (Teleostei: Pleuronectiformes). J. Fish Biol. 31: 805–833.CrossRefGoogle Scholar
  3. Brown, C.L. & B.G. Kim. 1995. Combined application of cortisol and triiodothyronine in the culture of larval marine finfish. Aquaculture 135: 79–86.CrossRefGoogle Scholar
  4. Brown, M.B. & A.B. Forsythe. 1974. Robust tests for the equality of variances. J. Amer. Stat. Assoc. 69: 364–367.CrossRefGoogle Scholar
  5. Cerdà-Reverter, J.M., S. Zanuy, M. Carrillo & O. Kah. 1996. Development of enzyme immunoassays for 3,5,3’-triiodo-Ltyronine and L-thyroxine: time course studies on the effect of food deprivation on plasma thyroid hormones in two marine teleosts, sea bass (Dicentrarchus labrax L.) and sea bream (Sparus aurata L.). Gen. Comp. Endocrinol. 103: 290–300.PubMedCrossRefGoogle Scholar
  6. Chambers, R.C. & W.C. Leggett. 1987. Size and age at metamorphosis in marine fish: an analysis of laboratory-reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Can. J. Fish. Aquat. Sci. 44: 1936–1947.CrossRefGoogle Scholar
  7. Cruz Orive, L.M. & E.R. Weibel. 1990. Recent stereological methods for cell biology: a brief survey. Am. J. Physiol. 258 (Lung Cell. Mol. Physiol. 2): L148 - L156.PubMedGoogle Scholar
  8. de Jesus, E.G., Y. Inui & T. Hirano, 1990. Cortisol enhances the stimulating action of thyroid hormones on fin-ray resorption of flounder larvae in vitro. Gen. Comp. Endocrinol. 79: 167–173.PubMedCrossRefGoogle Scholar
  9. de Jesus, E.G., T. Hirano & Y. Inui. 1991. Changes in cortisol and thyroid hormone concentrations during early development and metamorphosis in the Japanese flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol. 82: 369–376.CrossRefGoogle Scholar
  10. de Jesus, E.G., T. Hirano & Y. Inui. 1993. Flounder metamorphosis: its regulation by various hormones. Fish. Physiol. Biochem. 11: 323–328.PubMedCrossRefGoogle Scholar
  11. Donaldson, E.M., U.H.M. Fagerlund, D.A. Higgs & J.R. McBride. 1979. Hormonal enhancement of growth. pp. 532–570. In: W.S. Hoar, D.J. Randall & J.R. Brett (ed.) Fish Physiology, Volume 3, Academic Press, New York.Google Scholar
  12. Evans, B.I. & R.D. Fernald. 1990. Metamorphosis and fish vision. J. Neurobiology 21: 1037–1052.CrossRefGoogle Scholar
  13. Gibson, R.N. & R.S. Batty. 1990. Lack of substratum effect on the growth and metamorphosis of larval plaice (Pleuronectes platessa). Mar. Ecol. Prog. Ser. 66: 219–223.CrossRefGoogle Scholar
  14. Kloksleth, V.H. 1996. Adferd, vekst og overlevelse hos premetamorfosert kveite og piggvar i grunne lengdestromsrenner. (Behaviour, growth and survival of premetamorphic halibut and turbot in shallow raceways.) MSc. Thesis in Aquaculture, Norwegian College of Fisheries, Tromso. 74 pp.Google Scholar
  15. Harboe, T., S. Tuene, A. Mangor-Jensen, H. Rabben & I. Huse. 1994. Design and operation of an incubator for yolk-sac larvae of Atlantic halibut. The Prog. Fish-Cult. 56: 188–193.CrossRefGoogle Scholar
  16. Hoar, W.S. 1951. Hormones in fish. Univ. Toronto Stud. Biol. Ser. 59, Publ. Ontario Fish. Res. Lab. 71: 1–111.Google Scholar
  17. Inui, Y. & S. Miwa. 1985. Thyroid hormone induces metamorpho- sis of flounder larvae. Gen. Comp. Endocrinol. 60: 450–454.PubMedCrossRefGoogle Scholar
  18. Inui, Y., K. Yamano & S. Miwa. 1995. The role of thyroid hormone in tissue development in metamorphosing flounder. Aquaculture 135: 87–98.CrossRefGoogle Scholar
  19. Ishizuya-Oka, A., U. Shuichi & S. Yun-Bo. 1997. Temporal and spatial regulation of a putative transcriptional repressor Implicates it as playing a role in thyroid hormone dependent organ transformation. Developm. Genet. 20: 329–337.CrossRefGoogle Scholar
  20. Jelmert, A. & H. Rabben 1987. Upwelling incubators for eggs of the Atlantic halibut (Hippoglossus hippoglossus L.). ICES C.M. 1987/F: 20.Google Scholar
  21. Lam, T.J. 1980. Thyroxine enhances larval development and survival in Sarotherodon (Tilapia) mossambicus Ruppel. Aquaculture 21: 287–291.CrossRefGoogle Scholar
  22. Lam, T., J.V. Juario & J. Banno. 1985. Effect of thyroxine on growth and development in post-yolk-sac larvae of milkfish, Chanos chanos. Aquaculture 46: 179–184.CrossRefGoogle Scholar
  23. Leatherland, J. F. 1994. Reflections on the thyroidology of fishes: from molecules to humankind. Guelph Ichthyol. Rev. 2: 1–64.Google Scholar
  24. Matsumoto, J. & T. Sekai. 1992. Assymetric pigmentation and pigment disorders in Pleuronectiformes (flounders). Pigment Cell Res. Suppl. 2: 275–282.Google Scholar
  25. Mayo, D.J. & D. Burton. 1998. Beta2-adrenoceptors mediate melanosome dispersion in winter flounder (Pleuronectes americanus). Can. J. Zool. 76: 175–180.Google Scholar
  26. Miwa, S. & Y. Inui. 1987a. Histological changes in the pituitary-thyroid axis during spontaneous and artificially induced metamorphosis of larvae of the flounder Paralichthys olivaceus. Cell Tissue Res. 249: 117–123.CrossRefGoogle Scholar
  27. Miwa, S. & Y. Inui. 1987b. Effects of various doses of thyroxine and triiodothyronine on the metamorphosis of flounder (Paralichthys olivaceus). Gen. Comp. Endocrinol. 67: 356–363.PubMedCrossRefGoogle Scholar
  28. Miwa, S. & Y. Inui. 1988. Thyroxine surge in metamorphosing flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol. 70: 158–163.PubMedCrossRefGoogle Scholar
  29. Miwa, S., K. Yamano & Y. Inui. 1992. Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis. J. Exp. Zool. 261: 424–430.CrossRefGoogle Scholar
  30. Nacario, J.F. 1983. The effect of thyroxine on the larvae and fry of Sarotherodon niloticus L. (Tilapia nilotica). Aquaculture 34: 73–83.CrossRefGoogle Scholar
  31. Næss, T & O. Lie. 1998. A sensitive period for the determination of pigmentation pattern in halibut juveniles: the role of diet. Aquacult. Res. (in press).Google Scholar
  32. Naas, K.E., T. Næss & T. Harboe. 1992. Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water. Aquaculture 105: 143–156.CrossRefGoogle Scholar
  33. Pittman, K., A.B. Skiftesvik & L. Berg. 1990. Morphological and behavioural development of halibut, Hippoglossus hippoglossus (L.) larvae. J. Fish Biol. 37: 455–472.CrossRefGoogle Scholar
  34. Pittman, K., A. Jelmert, T. Næss, T. Harboe & K. Watanabe. 1998. Plasticity of viable postmetamorphic forms of farmed Atlantic halibut (Hippoglossus hippoglossus L.). Aquacult. Res. 29: 949–954.CrossRefGoogle Scholar
  35. Sclower, A. 1930. Die Bedeutung der Schilddrüse für die Metamorphose des Aales and der Plattfishe (The involvement of the thyroid in the metamorphosis of eels and flatfishes). Forsch. Fortschr. Deutsch. Wiss. 6: 435–436.Google Scholar
  36. Seikai, T., J.B. Tanangonan & M. Tanaka. 1986. Temperature influence on growth and metamorphosis in the Japanese flounder (Paralichthys olivaceus) in the laboratory. Bull. Japan. Soc. Sci. Fish. 52: 977–982.CrossRefGoogle Scholar
  37. Stensland, K. 1995. Cortisol og testosteron i egg og larver fra kveite (Cortisol and testosterone in eggs and larvae of Atlantic halibut). MSc. Thesis in General Aquaculture, Institute of Fisheries and Marine Biology, University of Bergen. 48 pp.Google Scholar
  38. Tagawa, M. & T. Hirano 1987. Presence of thyroxine in eggs and changes in its content during early development of chum salmon, Oncorhynchus keta. Gen. Comp. Endocrinol. 68: 129–135.CrossRefGoogle Scholar
  39. Tagawa, M., S. Miwa, Y. Inui, E.G. de Jesus & T. Hirano. 1990. Changes in thyroid hormone concentrations during early development and metamorphosis in the flounder, Paralichthys olivaceus. Zool. Sci. 7: 93–96.Google Scholar
  40. Takagi, Y., J. Hirano, H. Tanabe & J. Ymanda. 1994. Stimulation of skeletal growth by thyroid hormone administration in the rainbow trout, Oncorhynchus mykiss. J. Exp. Zool. 268: 229–238.CrossRefGoogle Scholar
  41. Tanaka, M., S. Kawai, T. Sekai & J.S. Burke. 1996. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement. Mar. Fresh. Behay. Physiol. 28: 19–31.CrossRefGoogle Scholar
  42. Tanaka, M., J.B. Tanangonan, M. Tagawa, E.G. de Jesus, H. Nishida, M. Isaka, R. Kimura & T. Hirano. 1995. Development of the pituitary, thyriod and interrenal glands and applications of endocrinology to the improved rearing of marine fish larvae. Aquaculture 135: 111–126.CrossRefGoogle Scholar
  43. Tanangonan, J.B., M. Tagawa, M. Tanaka & T. Hirano. 1989. Changes in tissue thyroxine level of metamorphosing Japanese flounder (Paralichthys olivaceus) reared at different temperatures. Nippon Suissan Gakkaishi 55: 485–490.CrossRefGoogle Scholar
  44. Tata, J.R. 1996. Metamorphosis: an exquisite model for hormonal regulation of post-embryonic development. Biochem. Soc. Symp. 62: 123–136.PubMedGoogle Scholar
  45. Yamano, K., S. Miwa, T. Obinata & Y. Inui. 1991. Thyroid hormone regulates developmental changes in muscle during flounder metamorphosis. Gen. Comp. Endocrinol. 81: 464–472.PubMedCrossRefGoogle Scholar
  46. Yamano K., H. Takano-Ohmuro, T. Obinata & Y. Inui. 1994. Effect of thyroid hormone on developmental transition of myosin light chains during flounder metamorphosis. Gen. Comp. Endocrinol. 93: 321–326.PubMedCrossRefGoogle Scholar
  47. Yamano K. & S. Miwa. 1998. Differential gene expression of thyroid hormone receptor a and ß in fish development. Gen. Comp. Endocrinol. 109: 75–85.PubMedCrossRefGoogle Scholar
  48. Zar, J.H. 1996. Biostatistical analysis, 3rd edition. Prentice Hall, Englewood Cliffs. 662 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Jostein Sigurd Solbakken
    • 1
  • Birgitta Norberg
    • 2
  • Kuninori Watanabe
    • 1
  • Karin Pittman
    • 1
  1. 1.Department of Fisheries and Marine BiologyUniversity of Bergen, Bergen High Technology CenterBergenNorway
  2. 2.Institute of Marine ResearchAustevoll Aquaculture Research StationStorebøNorway

Personalised recommendations