Advertisement

Groups

  • Frank O. Wagner
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 503)

Abstract

Groups form an important class of examples of simple theories; both abstractly and in the applications. They also sometimes appear unexpectedly out of general structural considerations in a context where a priori no group was given. Moreover, they are amenable to a more detailed model-theoretic study: due to the homogeneity imposed by the group law, a group in a simple theory often has a more friendly behaviour than a general simple structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Remarks

  1. [99]
    Rahim Moosa. Definable group actions in simple theories. Preprint, 1998.Google Scholar
  2. [108]
    Anand Pillay. Definability and definable groups in simple theories. Journal of Symbolic Logic, 63: 788–796, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [160]
    Frank O. Wagner. Groups in simple theories. Preprint, 1997.Google Scholar
  4. [163]
    Frank O. Wagner. Hyperdefinable groups in simple theories. Preprint, 1999.Google Scholar
  5. [165]
    André Weil. On algebraic groups of transformations. American Journal of Mathematics, 77: 302–271, 1955.Google Scholar
  6. [136]
    G. Schlichting. Operationen mit periodischen Stabilisatoren. Archiv der Mathematik (Basel), 34: 97–99, 1980.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [161]
    Frank O. Wagner. Stable Groups (LMS LN 240). Cambridge University Press, Cambridge, UK, 1997.Google Scholar
  8. [30]
    Gregory Cherlin and Ehud Hrushovski. Permutation groups with few orbits on 5-tuples, and their infinite limits. Preprint, 1995.Google Scholar
  9. [25]
    Zoe Chatzidakis and Ehud Hrushovski. The model theory of difference fields. Transactions of the American Mathematical Society, 351 (8): 2997–3071, 1999.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [57]
    Ehud Hrushovski and Anand Pillay. Groups definable in local fields and pseudo-finite fields. Israel Journal of Mathematics, 85: 203–262, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [58]
    Ehud Hrushovski and Anand Pillay. Definable subgroups of algebraic groups over finite fields. Journal für die Reine und Angewandte Mathematik, 462: 69–91, 1995.zbMATHMathSciNetGoogle Scholar
  12. [126]
    Bruno P. Poizat. Groupes Stables. Nur Al-Mantiq Wal-Ma’rifah, Villeurbanne, France, 1987.Google Scholar
  13. [119]
    Bruno P. Poizat. Sous-groupes définissables d’un groupe stable. Journal of Symbolic Logic, 46: 137–146, 1981.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [121]
    Bruno P. Poizat. Groupes stables, avec types génériques réguliers. Journal of Symbolic Logic, 48: 339–355, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [46]
    Ehud Hrushovski. Contributions to Stable Model Theory. PhD thesis, University of California at Berkeley, Berkeley, USA, 1986.Google Scholar
  16. [47]
    Ehud Hrushovski. Locally modular regular types. In John T. Baldwin, editor, Classification Theory: Proceedings of the US-Israel Binational Workshop on Model Theory in Mathematical Logic, Chicago, ’85, (LNM 1292), pages 132–164. Springer-Verlag, Berlin, Germany, 1987.Google Scholar
  17. [13]
    George M. Bergman and Hendrik W. Lenstra, Jr. Subgroups close to normal subgroups. Journal of Algebra, 127: 80–97, 1989.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Frank O. Wagner
    • 1
  1. 1.Institut Girard DesarguesUniversité Claude Bernard (Lyon-1)VilleurbanneFrance

Personalised recommendations