Radiolabeled antibodies for the management of metastatic cancer

  • Hazel B. Breitz
  • Alan R. Fritzberg


Radiolabeled antibodies directed against tumorassociated antigens may be used in the management and treatment of cancer. Radioimmunoscintigraphy (RIS) is an imaging modality that can help determine the location and extent of disease through detection of gamma emitting radionuclides linked to an antibody. Radioimmunotherapy (RIT) is a therapeutic approach that aims to destroy tumor cells via targeted radiation using a tumor-associated antibody radiolabeled with a radionuclide emitting particulate radiation,such as beta or alpha particles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Nabi HH,Spaulding M,Farrell E,Derby L, Lamonica D. Treatment of refractory prostate carcinoma with Y90 KC4. J Nucl Med (Suppl.) 1995; 36: 213 P.Google Scholar
  2. 2.
    Adelstein SJ, Kassis AI. Radiobiologic implications of the microscopic distribution of energy from radionuclides. Nucl Med Biol 1987; 14: 165–9.Google Scholar
  3. 3.
    Aljouni MI,Merrick H, Skeel RT, Dobeelbower RR. Concomitant radiation therapy and constant infusion FudR for unresectable liver metastases. Am J Clin Oncol 1990; 13: 532–5.Google Scholar
  4. 4.
    Alvarez RD,Partridge EE, Khazaeli MB et al. Intraperitoneal radioimmunotherapy of ovarian cancer with 177LuCC49: a phase I/II study. Gynecol Oncol 1997; 65: 94–101.Google Scholar
  5. 5.
    Appelbaum FR,Matthews DC, Eary JF et al. Use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 1992; 54: 829–33.Google Scholar
  6. 6.
    Arnold MW, Schneebaum S,Berens A, Mojzisik C,Hinkle G,Martin EW Jr. Radioimmunoguided surgery challenges traditional decision making in patients with primary colorectal cancer. Surgery. 1992; 112: 624–30.PubMedGoogle Scholar
  7. 7.
    Axworthy DB,Reno JM, Hylarides MD et al. Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci USA 2000; 97: 1802–7.Google Scholar
  8. 8.
    Barbet J, Kraeber-Bodere F, Vuillez P-J, Gautherot E, Rouvier E, Chatal J-F. Pretargeting with the affinity enhancement system for radioimmunothrapy. Can Biother Radiopharm 1999; 14: 153–66.Google Scholar
  9. 9.
    Behr TM,Sharkey RM, Juweid ME et al. Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG. J Nucl Med 1997; 38: 858–70.Google Scholar
  10. 10.
    Bernstein ID, Eary JF,Badger CC et al. High dose radiolabeled antibody therapy of lymphoma. Cancer Res 1990; 50: 1017s - 21s.PubMedGoogle Scholar
  11. 11.
    Bierman PJ, Vose JM, Leichner PK et al. Yttrium-90-labeled antiferritin followed by high-dose chemotherapy and autologous bone marrow transplantation for poor prognostic Hodgkin’s disease. J Clin Oncol 1993; 11: 698–703PubMedGoogle Scholar
  12. 12.
    Bierwaltes WH. Radioimmunotherapy of cancer: historical perspectives and prospects for the future. Text of talk delivered at the NATO Conference on Radiolabeled monoclonal antibody and external scintigraphy. Science 1979; 206: 844–7.Google Scholar
  13. 13.
    Bigner DD,Brown M,Coleman RE et al. Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate me1–14 F(ab~)2–a preliminary report. J Neuro-Oncol 1995; 24: 109–22.Google Scholar
  14. 14.
    Blumenthal RD,Sharkey RM,Forman D,Wong G,Goldenberg DM. Cytokine intervention permits dose escalation of radioantibody. Cancer (Suppl.) 1994; 73: 1083–92.Google Scholar
  15. 15.
    Borgelt BB,Gelber R,Brady L. The palliation of hepatic metastases: results of Radiation Oncology Group pilot study. Int J Radiat Oncol Biol Physics 1981; 7: 587–91.Google Scholar
  16. 16.
    Brady LW, Miyamoto C, Woo DV et al. Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int J Rad Oncol Biol Phys 1991; 22: 225–30.Google Scholar
  17. 17.
    Brady L, Woo D, Markoe A et al. Radioimmunotherapy with 125I-EGF-425 in patients with brain tumors: preliminary results of a phase II clinical trial. Antibodies Immunoconj Radiopharm 1990; 3: 169–79.Google Scholar
  18. 18.
    Brandt KD,Johnson DK. Structure-function relationships in indium-111 radioimmunoconjugates. Bioconjugate Chem 1992; 3: 118–25.Google Scholar
  19. 19.
    Breitz HB, Weiden PL, Vanderheyden J-L et al. Clinical experience with Re-186-labeled monoclonal antibodies for radioimmunotherapy: results of phase I trials. J Nucl Med 1992; 33: 1099–112.PubMedGoogle Scholar
  20. 20.
    Breitz HB,Fisher DR, Weiden PL et al. Dosimetry of rhenium-186-labeled monoclonal antibodies: methods, predictions from technetium-99m-labeled antibodies and results of phase I trials. J Nucl Med 1993; 34: 908–17.Google Scholar
  21. 21.
    Breitz HB,Seiler C, Weiden P et al. Re-186 16.88 IgM and 88BV69 IgG human antibody studies to assess potential for radioimmunotherapy. J Nucl Med 1994; 34: 100 P.Google Scholar
  22. 22.
    Breitz HB,Sullivan K, Nelp WB. Imaging lung cancer with radiolabeled antibodies. Semin Nucl Med 1993; 23: 127–32.Google Scholar
  23. 23.
    Breitz HB,Durham JS,Fisher DR et al. Pharmacokinetics and normal organ dosimetry following intraperitoneal rhenium-186-labeled monoclonal antibody. J Nucl Med 1995; 36: 754–61.Google Scholar
  24. 24.
    Breitz HB, Weiden PL, Beaumier PL et al. Clinical optimization of pretargeted radioimmunotherapy (PRIT) with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J Nucl Med 2000; 41: 131–40.PubMedGoogle Scholar
  25. 25.
    Breitz HB,Fisher DR, Goris ML et al. Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NRLU-10/straptavidin. Can Bio Radiopharm 1999; 14: 381–94.Google Scholar
  26. 26.
    Brown MT,Coleman RE,Friedman AH et al. Intrathecal 131I-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomeningeal neoplasms or primary brain tumor resction cavities with subarachnoid communication: phase I trial results. Clin Cancer Res 1996; 2: 963–72.Google Scholar
  27. 27.
    Buchegger F, Allal AS,Roth A et al. Combined radioimmunotherapy and radiotherapy of liver metastases from colorectal cancer: a feasibility study. Anticancer Res 2000; 20: 1889–96.PubMedGoogle Scholar
  28. 28.
    Buchmann I, Bunjes D, Kotzerke J et al. Myeloabaltive radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation biodistribution, biokinetics and immediate toxicities. Cancer Biother Radiopharm 2002; 17: 151–63.PubMedGoogle Scholar
  29. 29.
    Buchsbaum DJ. Experimental radioimmunotherapy. Semin Radiat Oncol 2000; 10: 156–67.PubMedGoogle Scholar
  30. 30.
    Buchsbaum DJ, Khazaeli MB,David MA,Lawrence TS. Sensitization of radiolabeled monoclonal antibody therapy using bromodeoxyuridine. Cancer 1994; 73: 999–1005.PubMedGoogle Scholar
  31. 31.
    Camera L, Kinuya S, Garmestani K et al. Comparative biodistribution of indium-and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6- methyl-DTPA (1B4M-DTPA) or 2-(p-SCN-Bz) -1,4,7,10- tetraazacyclododecane tetraacetic acid (2B-DOTA). Eur J Nucl Med 1994; 21: 640–6.PubMedGoogle Scholar
  32. 32.
    Carrasquillo JA,Krohn KA, Beaumier P et al. Diagnosis and treatment for solid tumors with radiolabeled antibodies and immune fragments. Cancer Treat Rep 1984; 68: 317–28.Google Scholar
  33. 33.
    Clifton KH, Szybalski W, Heidelberger C, Gollin FF, Ansfield FJ, Vermund H. Incorporation of I-125 labeled iodoxyuridine into the deoxyribonucleic acid of murine and human tissues following therapeutic doses. Cancer Res 1963; 23: 1715–23.PubMedGoogle Scholar
  34. 34.
    Colcher D,Esteban J, Carrasquillo JA et al. Complementation of intracavitary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. Cancer Res 1987; 47: 4218–24.Google Scholar
  35. 35.
    Collier BD, Abdel-Nabi H,Doerr RJ et al. Immunoscintigraphy performed with In-111-labeled CYT-103 in the management of colorectal cancer: comparison with CT. Radiology 1992; 185: 179–86.PubMedGoogle Scholar
  36. 36.
    Connett JM,Anderson CJ, Guo LW et al. Radioimmunotherapy with 64Cu-labeled monoclonal antibody: a comparison with 67Cu. Proc Natl Acad Sci USA 1996; 93: 6814–18.Google Scholar
  37. 37.
    Crippa F, Bolis G, Seregni E et al. Single dose intraperitoneal radioimmunotherapy with the murine monoclonal antibody I-131Mov 18:clinical results in patients with minimal residual disease. Eur J Cancer 1995; 31A: 686–90.Google Scholar
  38. 38.
    Deb N, Goris M, Trisler K et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res 1996; 2: 1289–97.PubMedGoogle Scholar
  39. 39.
    DeNardo GL, DeNardo SJ,Meares CF et al. Pharmacokinetics of copper-67 conjugated Lym-1, a potential therapeutic radioimmunoconjugate in mice and in patients with lymphoma. Antibodies Immunoconjug Radiopharm 1991; 4: 777–85.Google Scholar
  40. 40.
    DeNardo GL, DeNardo SJ,Lamborn KR et al. Low-dose, Fractionated Radioimmunotherapy for B-cell Malignancies using 131I-LYM-1 Antibody. Cancer Biother Radiopharm 1998; 13: 239–54.PubMedGoogle Scholar
  41. 41.
    DeNardo GL, DeNardo SJ,Goldstein DS et al. Maximum-tolerated dose,toxicity, and effeciacy of 131I-Lym-1 antibody for fractionated radioimmunotherapy of non-Hodgkin’s lymphoma. J Clin Oncol 1998; 16: 3246–56.PubMedGoogle Scholar
  42. 42.
    DeNardo GL, Kukis DL,Shen S, DeNardo DA,Meares CF, DeNardo SJ. 67Cu-versus 131I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin’s lymphoma. Clin Cancer Res 1999; 5: 533–41.PubMedGoogle Scholar
  43. 43.
    DeNardo GL, DeNardo SJ, Kukis D et al. Strategies for enhancement of radioimmunotherapy. Nucl Med Biol 1991; 18: 633–40.Google Scholar
  44. 44.
    DeNardo GL, DeNardo SJ,Lamborn KR et al. Enhanced tumor uptake of monoclonal antibody in nude mice with PEG IL-2. Antibodies Immunoconj Radiopharm 1991; 4: 859–70.Google Scholar
  45. 45.
    DeNardo GL, Kukis DL, DeNardo SJ et al. Enhancement of Cu-67–2IT-BAT-LYM-1 therapy in mice with human Burkitt’s lymphoma (RAJI) using interleukin 2 (rIL-2). Tumor Target 1996; 2: 150.Google Scholar
  46. 46.
    DeNardo GL,Maddock SW, Sgouros G,Scheibe PO, DeNardo SJ. Immunoadsorption: an enhancement strategy for radioimmunotherapy. J Nucl Med 1993; 6: 1020–7.Google Scholar
  47. 47.
    DeNardo SJ. Radioimmunotherapy for breast cancer: systemic tumor targeted irradiation. Adv Oncol 2000; 15: 25–9.Google Scholar
  48. 48.
    DeNardo SJ, Mirick GR,Kroger LA et al. The biologic window for chimeric L6 radioimmunotherapy. Cancer (Suppl.) 1994; 73: 1023–32.Google Scholar
  49. 49.
    DeNardo SJ,O’Grady LF,Richman CM et al. Radioimmunotherapy for advanced breast cancer using I-131- ChL6 antibody. Anticancer Res 1997; 17: 1745–52.Google Scholar
  50. 50.
    DeNardo SJ,Richman CM,Goldstein DS et al. Yttrium-90/ indium-111-DOTA-peptide-chimeric L6: pharmacokinetics, dosimetry and initial results in patients with incurable breast cancer. Anticancer Res 1997; 17: 1735–44.Google Scholar
  51. 51.
    DeNardo SJ,Kramer EL,O’Donnell RT et al. Radioimmunotherapy for breast cancer using indium-111/yttrium-90 BrE-3: results of a phase I clinical trial. J Nucl Med 1997; 38: 1180–5.Google Scholar
  52. 52.
    DeNardo SJ,Burke PA,Leigh BR et al. Neovascular targeting with cyclic RGD peptide (cRGDf-ACHA) to enhance delivery of radioimmunotherapy. Cancer Biother Radiopharm 2000; 15: 71.Google Scholar
  53. 53.
    DeNardo SJ, Kukis DL,Kroger L et al. Synergy of taxol and radioimmunotherapy with yttrium-90-labeled chimeric L6 antibody: efficacy and toxicity in breast cancer xeno-grafts. Proc Natl Acad Sci USA 1997; 93: 4000–4.Google Scholar
  54. 54.
    Dillehay LE,Williams JR. Radiobiology of dose-rate patterns achievable in radioimmunoglobulin therapy. In: Vaeth JM,Meyer JL, eds. The Present and Future Role of Monoclonal Antibodies in the Management of Cancer. Basel: Karger, 1990; 24: 96–103.Google Scholar
  55. 55.
    Dillman RO. Human antimouse and antiglobulin responses to monoclonal antibodies. Antibody Immunoconj Radiopharm 1990; 3: 1–15.Google Scholar
  56. 56.
    Epenetos AA. Combined radiolabeled antibodies and radiotherapy for the treatment of head and neck cancer. J Immunother 1994; 16: 163 (abstract).Google Scholar
  57. 57.
    Epenetos AA, Hird V,Lambert H,Mason P,Coulter C. Long term survival of patients with advanced ovarian cancer treated with intraperitoneal radioimmunotherapy. Int J Gynecol Cancer 2000; 10: 44–6.PubMedGoogle Scholar
  58. 58.
    Epstein AL, Khawli LA, Hornick JL,Taylor CR. Identification of a MAb, TV-1,directed against the basement membrane of tumor vessels, and its use to enhance the delivery of macromolecules after conjugation with interleukin-2. Cancer Res 1995; 55: 2763.Google Scholar
  59. 59.
    Epstein AL, Marder RJ,Winter JN et al. Two new monoclonal antibodies, Lym-1 and Lym-2,reactive with human B-lymphocytes and derived tumors,with immunodiagnostic and immunotherapeutic potential. Cancer Res 1987; 47: 830–40.PubMedGoogle Scholar
  60. 60.
    Fowler JF. Radiobiological aspects of low dose rates in radioimmunotherapy. Br J Radiat Oncol Biol Phys 1990; 18: 1261–9.Google Scholar
  61. 61.
    Fritzberg AR,Abrams PG, Beaumier PL et al. Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent. Proc Natl Acad Sci USA 1988; 85: 4025–9Google Scholar
  62. 62.
    Fritzberg AR, Beaumier PL, Bottino BJ,Reno JR. Approaches to improved antibody-and peptide-mediated targeting for imaging and therapy of cancer. J Control Rel 1994; 28: 167–73.Google Scholar
  63. 63.
    Fritzberg AR, Berninger RW,Hadley SW,Wester DW. Approaches to radiolabeling of antibodies for diagnosis and therapy of cancer. Pharm Res 1988; 5: 325–34.PubMedGoogle Scholar
  64. 64.
    Fritzberg AR, Vanderheyden J-L,Morgan AC, Schroff RW, Abrams PG. Rhenium-186/-188 labeled antibodies for radioimmunotherapy. In: Nicolini M, Bandoli G, Mazzi U, eds. Technetium and Rhenium in Chemistry and Nuclear Medicine. Verona: Cortina Intl., 1990: 615–21.Google Scholar
  65. 65.
    Fritzberg AR,Wessels BW. Therapeutic radionuclides. In: Wagner HN,Szabo Z,Buchanan JW, eds. Principles of Nuclear Medicine. Philadelphia, PA: WB Saunders Co., 1995: 229–34.Google Scholar
  66. 66.
    Fritzberg AR,Wilbur DS. Radiolabeled antibodies for targeted diagnostics. In: Torchilin V, ed. Targeted Delivery of Imaging Agents. Boca Raton: CRC Press, 2001: 83–101.Google Scholar
  67. 67.
    Gansow OA. Newer approaches to the radiolabeling of monoclonal antibodies by use of metal chelates. Nucl Med Biol 1991; 18: 369–81.Google Scholar
  68. 68.
    Goodman GE, Hellstrom I, Yelton DE et al. Phase I trial of chimeric (human-mouse) monoclonal antibody L6 in patients with non-small cell lung,colon, and breast cancer. Cancer Immunol Immunother 1993; 36: 267–73.PubMedGoogle Scholar
  69. 69.
    Goodwin DA,Meares CF. Pretargeting: general principles. Cancer 1997; 80: 2675s - 80s.Google Scholar
  70. 70.
    Goodwin DA,Meares CF,McCall MJ et al. Pretargeted immunoscintigraphy of murine tumors with indium-111- labeled bifunctional haptens. J Nucl Med 1988; 29: 266–334.Google Scholar
  71. 71.
    Goodwin DA,Meares CF,Watanabe N et al. Pharmacokinetics of pretargeted monoclonal antibody 2D12.5 and 90Y-Janus-2(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecanete-traacetic acid(DOTA) in BALB/c mice with KHJJ mouse adenocarcinoma: a model for radioimmunotherapy. Cancer Res 1994; 54: 5937–46.Google Scholar
  72. 72.
    Goshorn S,Sanderson J, Axworthy D, Lin Y, Hylarides M, Schultz J. Preclinical evaluation of a humanized NR-LU-10 antibody-streptavidin fusion protein for pretargeted cancer therapy. Cancer Biother Biopharm 2001; 16: 109–23.Google Scholar
  73. 73.
    Greiner JW, Guadagni F,Goldstein D et al. Evidence for the evaluation of serum carcinoembryonic antigen and tumor associated glycoprotein-72 levels in patients administered interferons. Cancer Res 1991; 51: 4155–63.PubMedGoogle Scholar
  74. 74.
    Greiner JW,Ullman CD, Nieroda C et al. Improved radioimmunotherapeutic efficacy of an anticarcinoma monoclonal antibody (131I-CC49) when given in combination with gamma-interferon. Cancer Res 1993; 53: 600–8.Google Scholar
  75. 75.
    Griffiths GL,Goldenberg DM,Jones AL,Hansen HJ. Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconj Chem 1992; 3: 91–9.Google Scholar
  76. 76.
    Haddad R, Avital S, Troitsa A et al. Benefits of radioimmunoguided surgery for pelvic recurrence. Eur J Surg Oncol 2001; 27: 298–301.PubMedGoogle Scholar
  77. 77.
    Hassfjell S, Brechbiel MW. The development of the a-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications. Chem Rev 2001; 101: 2019–36.PubMedGoogle Scholar
  78. 78.
    Herzog H, Rosch F, Stocklin G,Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993; 34: 2222–6.PubMedGoogle Scholar
  79. 79.
    Hird V,Stewart JSW,Snook D et al. Intraperitoneally administered 90Y-labeled monoclonal antibodies as a third line of treatment in ovarian cancer, a phase 1–2 trial: problems encountered and possible solutions. Br J Cancer 1990; 10: 48–51.Google Scholar
  80. 80.
    Hird V, Maraveyas A,Snook D et al. Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br J Cancer 1993; 68: 403–6.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Hnatowich DJ. Recent developments in the radiolabeling of antibodies with iodine,indium, and technetium. Semin Nucl Med. 1990; 20: 80–91.PubMedGoogle Scholar
  82. 82.
    Hopkins K,Chandler C, Bullimore J, Sandeman D, Coakham H, Kemshead JT. A pilot study of the treatment of patients with recurrent malignant gliomas with intratumoral yttrium-90 radioimmunoconjugates. Radiother Oncol 1995; 34: 121–31.Google Scholar
  83. 83.
    Howell RW, Dandamudi V, Rao, Sastry KSR. Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors. Med Phys 1989; 16: 66–74.PubMedGoogle Scholar
  84. 84.
    Humm JL. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 1986; 27: 1490–7.PubMedGoogle Scholar
  85. 85.
    Huse WD, Sastry L,Iverson SA et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage. Science 1989; 246: 1275–81.PubMedGoogle Scholar
  86. 86.
    Jacobs AJ, Fer M, Su F-M et al. A phase I trial of a rhenium-186-labeled monoclonal antibody administered intraperitoneally in ovarian carcinoma: toxicity and clinical response. Obstet Gynecol 1993; 82: 586–93.PubMedGoogle Scholar
  87. 87.
    Jain RK. Determinants of tumor blood flow: a review. Cancer Res 1988; 48: 2641–58.PubMedGoogle Scholar
  88. 88.
    James K. Human monoclonal antibodies and engineered antibodies in the management of cancer. Semin Cancer Biol 1990; 1: 243–53.PubMedGoogle Scholar
  89. 89.
    Johnson TA,Press OW. Therapy of B-cell lymphomas with monoclonal antibodies and radioimmunoconjugates: the Seattle experience. Ann Hematol 2000; 79: 175–82.Google Scholar
  90. 90.
    Jurcic JG. Antibody therapy of acute myelogenous leukemia. Can Bio Radiopharm 2000; 15: 319–26.Google Scholar
  91. 91.
    Jurcic JG. McDevitt MR, Sgouros G et al. Phase I trial of targeted alpha-particle therapy for myeloid leukemia with bismuth-213-HuM195 (anti-CD33) in patients with leukemia. Proc Am Soc Clin Oncol. 1999; 18: 7a.Google Scholar
  92. 92.
    Juweid M,Sharkey RM,Behr T et al. Targeting and initial radioimmunotherapy of medullary thyroid carcinoma with 131I-labeled monoclonal antibodies to carcinoembryonic antigen. Cancer Res 1995; 55: 5946s.Google Scholar
  93. 93.
    Juweid ME,Sharkey RM,Behr T et al. Radioimmunotherapy of patients with small-volume tumors using iodine-131- labeled anti-CEA monoclonal antibody NP-4 F(ab’)2. J Nucl Med 1996; 37: 1504–10.Google Scholar
  94. 94.
    Juweid M, Sharkety RM, Swayne LC et al. Phase I dose-escalation trial of 31I-labeled MN-14 anti-carcinoembryonic antigen (CEA) monoclonal antibody in patients with epithelial ovarian cancer. Tumor Target 1996; 2: 189.Google Scholar
  95. 95.
    Juweid ME, Hajjar G,Stein R et al. Initial experience with high-dose radioimmunotherapy of metastatic medullary thyroid cancer using 131I-MN-14 F(ab)2 anti-carcinoembryonic antigen MAb and AHSCR J Nucl Med 2000; 41: 93–103.Google Scholar
  96. 96.
    Kalofonas HP, Pawlikowska TR,Hemingway A et al. Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med 1989; 30: 1636–45.Google Scholar
  97. 97.
    Kalofonos HP, Rowlinson G, Epenetos AA. Enhancement of antibody uptake in human colon xenografts following irradiation. Cancer Res 1990; 50: 159–63.PubMedGoogle Scholar
  98. 98.
    Kalofonos HP, Rusckowski M, Siebecker DA et al. Imaging of tumor in patients with In-111-labeled biotin and streptavidin-conjugated antibodies: preliminary communication. J Nucl Med 1990; 31: 1791–6.PubMedGoogle Scholar
  99. 99.
    Kaminski MS, Zasadny KR,Francis IR et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-BI (antiCD20) antibody. N Engl J Med 1993; 329: 459–65.PubMedGoogle Scholar
  100. 100.
    Kaminski MS, Zasadny KR,Francis IR et al. Iodine-131- anti-B1 radioimmunotherapy for B-cell lymphoma. J Clin Oncol 1996; 14: 1974–81.PubMedGoogle Scholar
  101. 101.
    Kaminski M, Zelenetz A,Press O et al. Pivotal study of iodine I-131 tositumomab for chemotherapy-regractory low-grade or transfored low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 2001; 19: 3918–28.PubMedGoogle Scholar
  102. 102.
    Kaminski MS,Estes J, Zasadny KR et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000; 96: 4: 1259–66.Google Scholar
  103. 103.
    Kavanagh JJ,Rosenblum MG, Kudelka AP et al. Pharmacokinetics,side effects and tissue distribution of intraperitoneal B72.3-GYK-DTPA 90Y with and without EDTA in ovarian cancer. Cancer Invest 1992; 10: 38s - 41s.Google Scholar
  104. 104.
    Kievit E, Pinedo HM, Schluper HMM, Boven E. Improvement of the therapeutic efficacy of monoclonal antibody 131I-323/A3 by the addition of cisplatin in experimental human ovarian cancer. Proc AACR 1996; 37: 609.Google Scholar
  105. 105.
    King DJ,Turner A,Farnsworth APH et al. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res 1994; 54: 6176–85.Google Scholar
  106. 106.
    Kinsella TJ,Mitchell JB,Russo A. Continuous intravenous infusion of bromodeoxyuridine as a clinical rediosensitizer. J Clin Oncol 1984; 2: 1144–50.Google Scholar
  107. 107.
    Klein JL, Leichner PK,Callahan KM, Laphar KA,Order SE. Effects of anti-antibodies on radiolabeled antibody therapy. Antibody Immunoconj Radiopharm 1988; 1: 55–64.Google Scholar
  108. 108.
    Knox SJ, Goris ML, Trisler K et al. Yttrium-90-labeled antiCD20 monoclonal antibody therapy of recurrent B- cell lymphoma. Clin Cancer Res 1996; 2: 457–70.PubMedGoogle Scholar
  109. 109.
    Koastakolu L, Ali A,Coleman R et al. Efficacy and safety of Bexxar in a large multicenter expanded access study. J Nucl Med 2001; 42: 122.Google Scholar
  110. 110.
    Kosmas C, Maraveyas A, Gooden CS,Snook D, Epenetos A. Anti-chelate antibodies after intraperitoneal yttrium-90- labeled antibody immunoconjugates for ovarian cancer therapy. J Nucl Med 1995; 36: 746–53.PubMedGoogle Scholar
  111. 111.
    Krag DN, Haseman MK,Ford P et al. Gamma probe location of 111Indium-labeled B72.3: an extension of immunoscintigraphy. J Surg Oncol 1992; 51: 226–30.PubMedGoogle Scholar
  112. 112.
    Kramer EL,Larson SM. Tumor targeting with radiolabeled antibody for diagnosis and therapy. Immunol Allergy Clin N Am 1991; 11: 301–39.Google Scholar
  113. 113.
    Kramer EL, Liebes L, Wasserheit C et al. Initial clinical evaluation of radiolabeled MX-DTPA humanized BrE-3 antibody in patients with advanced breast cancer. Clin Cancer Res 1998; 4: 1679–88.PubMedGoogle Scholar
  114. 114.
    Krenning EP, Valkema R, Kooij et al. Peptide receptor radionuclide therapy with In-111-DTPA-D-Phe-Octreotide. J Nucl Med 1997; 38: 47 (abstract).Google Scholar
  115. 115.
    Lane DM,Eagle KF, Begent RHJ et al. Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labeled antibody to carcinoembryonic antigen: phase I/II study with comparative biodistribution of intact and F(ab’)2 antibodies. Br J Cancer 1994; 70: 521–5.Google Scholar
  116. 116.
    Larson SM. Radioimmunology: imaging and therapy. Cancer Suppl 1991; 67: 1253–60.Google Scholar
  117. 117.
    Larson SM, Carrasquillo JA, McCuffin RW et al. Preliminary clinical experience using an I-131 labeled murine Fab against a high molecular weight antigen of human melanoma. Radiology 1985; 155: 487–92.PubMedGoogle Scholar
  118. 118.
    Le Doussal J-M,Martin M, Gautherot E, Delaage M, Barbet J. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J Nucl Med 1989; 30: 1358–66.Google Scholar
  119. 119.
    Ledermann JA, Begent RHJ, Massof C,Kelly AMB,Adam T, Bagshawe KD. A phase-I study of repeated therapy with radiolabeled antibody to carcinoembryonic antigen using intermittent or continuous administration of cyclosporin A to suppress the immune response. Int J Cancer 1991; 47: 659–64.PubMedGoogle Scholar
  120. 120.
    Lenhard RE,Order SE, Spunberg JJ et al. Isotopic immunoglobulin: a new systemic therapy for advanced Hodgkin’s disease. J Clin Oncol 1985; 3: 1296.Google Scholar
  121. 121.
    Li M,Meares CF, Zhong GR, Miers L, Xiong CY, DeNardo SJ. Labeling monoclonal antibodies with 90yttrium-and 111indium-DOTA chelates: a simple and efficient method. Bioconj Chem 1994; 5: 101–4.Google Scholar
  122. 122.
    LoBuglio AF,Wheeler RH, Trang J et al. Mouse/human chimeric antibody in man: kinetics and immune response. Proc Natl Acad Sci USA 1989; 86: 4220–4.Google Scholar
  123. 123.
    Mach JP, Bucheggar F, Forni M et al. Use of radiolabeled monoclonal anti-CEA antibodies for detection of human carcinomas by external photoscanning and tomoscintigraphy. Immunol Today 1981; 2: 239–49.Google Scholar
  124. 124.
    Mahe MA, Fumoleau P, Fabbro M et al. A phase II study of intraperitoneal radioimmunotherapy with iodine 131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin Cancer Res 1999; 5: 3249s - 53sPubMedGoogle Scholar
  125. 125.
    Macklis RM, Lin JY, Beresford B, Atcher RW,Hines JJ, Humm JL. Cellular kinetics, dosimetry, and radiobiology of a-particle radioimmunotherapy: induction of apoptosis. Radiat Res 1992; 130: 220–6.PubMedGoogle Scholar
  126. 126.
    Matthews DC,Appelbaum FR,Bernstein ID et al. Phase I study of 131I-labeled anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999; 94: 1237–47.Google Scholar
  127. 127.
    McDevitt MR, Sgouros G,Finn RD et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 1998; 25: 1341–51.PubMedGoogle Scholar
  128. 128.
    Meredith RM, Khazaeli MB, Plott WE et al. Phase I trial of iodine-131-chimeric B72.3 in metastatic colorectal cancer. J Nucl Med 1992; 33: 23–29.PubMedGoogle Scholar
  129. 129.
    Meredith RF, Khazaeli MB, Liu T et al. Dose fractionation of radiolabeled antibodies in patients with metastatic colon cancer. J Nucl Med 1992; 33: 1648–53.PubMedGoogle Scholar
  130. 130.
    Meredith RF, Khazaeli MB, Plott WE et al. Initial clinical evaluation of iodine-125-labeled chimeric 17–1A for metastatic colon cancer. J Nucl Med 1995; 36: 2229–33.PubMedGoogle Scholar
  131. 131.
    Meredith RF, Bueschen AJ, Khazaeli MB et al. Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. J Nucl Med 1994; 35: 1017–22.PubMedGoogle Scholar
  132. 132.
    Meredith RF, Khazaeli MB, Carabasi MH, LoBuglio AF. Radioimmunotherapy of prostate cancer. In: Riva P, ed. Therapy of Malignacies with Radioconjugate Monoclonal Antibodies: Present Possibilities and Future Perspectives. Chichester: Harwood Academic, 1999: 321–31.Google Scholar
  133. 133.
    Misrikale JS,Klein JL,Schroeder J,Order SE. Radiation enhancement of radiolabelled antibody deposition in tumors. Int J Radiat Oncol Biol 1987; 3: 1839–44.Google Scholar
  134. 134.
    Moffat FL,Vargas-Cuba RD, Serafini AN et al. Preoperative scintigraphy and operative probe scintimetry of colorectal carcinoma using technetium-99m 88BV59. J Nucl Med 1995; 36: 738–45.Google Scholar
  135. 135.
    Moffat FL,Pinsky CM, Hammershaimb L et al. Clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fab’ antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal,phase III trial. J Clin Oncol 1996; 14: 2295–305.Google Scholar
  136. 136.
    Moi MK,Meares CF,McCall MJ,Cole WC, DeNardo SJ. Copper chelates as probes of biological systems: stable copper complexes with a macrocyclic bifunctional chelating agent. Anal Biochem 1985; 148: 249–53.Google Scholar
  137. 137.
    Morton JD, Quadri SM,Tang XZ et al. Treatment of refractory end stage Hodgkin’s disease with yttrium-90 polyclonal antiferritin antibodies. J Immunother 1994; 16: 160.Google Scholar
  138. 138.
    Morstyn G,Miller R, Russi A,Mitchell J. 131-Iodine conjugated antibody cell kell enhanced by bromodeoxyuridine. Int J Radiat Oncol Biol Phys 1994; 10: 1437–40.Google Scholar
  139. 139.
    Mulligan T, Carrasquillo JA,Chung Y et al. Phase I study of intravenous 177Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clin Cancer Res 1995; 6: 1447–54.Google Scholar
  140. 140.
    Murray JL,Macey DJ, Kasi LP et al. Phase II radioimmunotherapy trial with 131I-CC49 in colorectal cancer. Cancer 1994; 73: 1057–66.Google Scholar
  141. 141.
    Murray JL,Macey DJ,Grant EJ et al. Enhanced TAG-72 expression and tumor uptake of radiolabeled monoclonal antibody CC49 in metastatic breast cancer patients following a-interferon treatment. Cancer Res Suppl 1995; 55: 5925s.Google Scholar
  142. 142.
    Murray JL, Zukiwski AA, Mujoo K et al. Recombinant alpha-interferon enhances tumor targeting of an anti melanoma monoclonal antibody in vivo. J Biol Response Modif 1990; 4: 556–63.Google Scholar
  143. 143.
    Nabi HA,Doerr RJ. Radiolabeled monoclonal antibody imaging (immunoscintigraphy) of colorectal cancers: current status and future perspectives. Am J Surg 1992; 163: 448–56.Google Scholar
  144. 144.
    Nabi HA,Doerr RJ,Chan H-W, Balu D, Schmelter RF, Maguire RT. In-111-labeled monoclonal antibody immunoscintigraphy in colorectal carcinoma: safety,sensitivity, and preliminary clinical results. Radiology 1990; 175: 163–71.Google Scholar
  145. 145.
    Nakamura K, Kubo A. Biodistribution of I-126-labeled monoclonal antibody/IL-2 immunoconjugate in athymic mice bearing human tumor xenograft. Tumor Target 1996; 2: 153.Google Scholar
  146. 146.
    Neal CE,Swenson LC,Fanning Jc, Texter JH. Monoclonal antibodies in ovarian and prostate cancer. Semin Nucl Med 1993; 23: 114–26.Google Scholar
  147. 147.
    Ng B, Liebes L,Kramer EL et al. Synergistic activity of radioimmunotherapy with Y-90 MX-DTPA HuBre-3 and prolonged Topotecan infusion in human breast cancer xenografts. J Nucl Med 1997; 38: 46P (Suppl.).Google Scholar
  148. 148.
    O’Donnell RT, DeNardo GL, Kukis DL et al. 67Copper21T-BAT-Lym-1 for radioimmunotherapy of non-Hodgkin’s lymphoma. Clin Cancer Res 1999; 5: 3330s - 6s.PubMedGoogle Scholar
  149. 149.
    Okazaki S, Tempero M, Colcher D. Combination radioimmunotherapy and chemotherapy with 131I B72.3 and gemcitabine. Proc Am Assoc Cancer Res 1998; 39: 310.Google Scholar
  150. 150.
    Order SE,Klein JL, Leichner PK et al. Advances in iodine-131 labeled antiferritin immunoglobulin cancer therapy. Cancer Biol 1982; 34: 264–7.Google Scholar
  151. 151.
    Order SE,Klein JL, Leichner PK. Radiation therapy of hepatoma with I-131 and Y-90 labeled antiferritin antibodies. Int Conf Monoclonal Antibody Immunoconj Cancer 1986; 1: 27–8.Google Scholar
  152. 152.
    Order SE,Siegel JA, Principato R et al. Selective tumor irradiation by infusional brachytherapy in nonresectable pancreatic cancer: a phase I study. Int J Radiat Oncol Biol 1996; 36: 1117–26.Google Scholar
  153. 153.
    Order SE, Vriesendorp HM,Klein JL et al. A phase I study of 90yttrium antiferritin: dose escalation and tumor dose. Antibody Immunoconjug Radiopharm 1988; 1: 163–8.Google Scholar
  154. 154.
    Paganelli G, Belloni C, Magnani P et al. Two-step tumor targeting in ovarian cancer patients using biotinylated monoclonal antibodies and radioactive streptavidin. Eur J Nucl Med 1992; 19: 322–9.PubMedGoogle Scholar
  155. 155.
    Paganelli G, Magnani P,Meares C et al. Antibody guided therapy of CEA positive tumors using biotinylated monoclonal antiodies, avidin, and 90Y -DOTA-biotin: initial evaluation. J Nucl Med 1993; 34: 94.Google Scholar
  156. 156.
    Paganelli G, Malcovati M,Fazio F. Monoclonal antibody pretargetting techniques for tumour localization: the avidin-biotin system. Nucl Med Commun 1991; 12: 211–34.PubMedGoogle Scholar
  157. 157.
    Paganelli G, Grana C, Chinol M et al. Antibody guided three step therapy from high grade glioma with 90Y biotin. Eur J Nucl Med. 1999; 26: 348–57 1999.Google Scholar
  158. 158.
    Papanastassiou V, Pizer BL,Chandler CL, Zananiri, Kemshead JT,Hopkins KI. Pharmacokinetics and dose estimates following intrathecal administration of 131I-monoclonal antibodies for the treatment of central nervous system malignancies. Int J Radiat Oncol Biol Phys 1995; 31: 541–52.PubMedGoogle Scholar
  159. 159.
    Papanastassiou V, Pizer BL, Coakham HB, Bullimore J, Zananiri T, Kemshead JT. Treatment of recurrent and cystic malignant gliomas by a single intracavity injection of 131I monoclonal antibody: feasibility, pharmacokinetics and dosimetry. Br J Cancer 1993; 67: 144–51.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Philips TL, Prados MD, Bodell WJ et al. Rationale for and experience with clinical trials of halogenated pyrimidines in malignant gliomas: the UCSF/NCOG experience. In: Dewey WC, Edington M, Fry RJ et al., eds. Radiation Research: A Twentieth Century Perspective. San Diego: Academic Press, 1992: 601.Google Scholar
  161. 161.
    Prasad B, Lee M,Hendrickson FR. Irradiation of hepatic metastases. Int J Radiat Oncol Biol Phys 1977; 2: 129–32.PubMedGoogle Scholar
  162. 162.
    Press OW. Prospects for the management of non-Hodgkin’s lymphomas with monoclonal antibodies and immunoconjugates. Cancer J Sci Am 1998; (Suppl. 2 ): S19–26.Google Scholar
  163. 163.
    Press OW, Eary JF,Appelbaum FR et al. Radiolabeledantibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993; 329: 1219–24.PubMedGoogle Scholar
  164. 164.
    Press OW, Eary JF,Appelbaum FR,Bernstein ID. Radiolabeled antibody therapy of lymphomas. In: DeVita VT, Hellman S,Rosenberg SA, eds. Biologic Therapy of Cancer Philadelphia: Hellman S,Rosenberg SA, eds. 1994; 4: 1–13.Google Scholar
  165. 165.
    Press OW, Eary JF, Gooley T et al. A phase I/II trial of iodine- 131 -tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 2000; 96: 2934–42.PubMedGoogle Scholar
  166. 166.
    Rao DV,Howell RW. Time-dose-fractionation in radio immunotherapy: implications for selecting radionuclides. J Nucl Med 1993; 34: 1801–10.Google Scholar
  167. 167.
    Remmenga SW, Colcher D, Gansow O, Pippen G, Raubitschek A. Continuous infusion chemotherapy as a radiation-enhancing agent for yttrium-90-radiolabeled monoclonal antibody therapy of a human tumor xenograft. Gynecol Oncol 1994; 55: 115–22.PubMedGoogle Scholar
  168. 168.
    Richman CM, DeNardo SJ,O’Grady LF, DeNardo GL. Radioimmunotherapy for breast cancer using escalating fractionated doses of I-131 chimeric L6 with peripheral blood progenitor cell transfusions. Cancer Res 1995; 55: 5916s - 20sPubMedGoogle Scholar
  169. 169.
    Richman CM, DeNardo SJ,O’Donnell RT et al. Dosimetrybased therapy in metastatic breast cancer patients using 90Y monoclonal antibody 170H.82 with autologous stem cell support and cyclosporin A. Clin Cancer Res 1999; 5: 3243s - 8sPubMedGoogle Scholar
  170. 170.
    Riva P,Arista A, Franceschi G et al. Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res Suppl 1995; 55: 5952s.Google Scholar
  171. 171.
    Riva P, Franceschi G,Riva N, Casi M, Santimaria M, Adamo M. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med 2000; 27: 601–9.PubMedGoogle Scholar
  172. 172.
    Riva P,Tison G, Franchesci N, Casi M, Moscatelli G. Successful treatment of metastatic gastrointestinal cancer by means of radioimmunotherapy. J Nucl Med 1992; 33: 863 (abstract).Google Scholar
  173. 173.
    Rodwell JD,Alvarez VL, Lee C et al. Site-specific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations. Proc Natl Acad Sci USA 1986; 83: 2632–6.Google Scholar
  174. 174.
    Rosen ST,Zimmer AM, Goldman-Leiken et al. Radioimmunodetection and radioimmunotherapy of cutaneous T-cell lymphomas using an 131I-labeled T101 monoclonal antibody: an Illinios Cancer Council study. J Clin Oncol 1987; 5: 562.Google Scholar
  175. 175.
    Roselli M, Milenic DE, Brechbiel MW et al. In vivo comparison of CHX-DTPA ligand isomers in athymic mice bearing carcinoma xenografts. Cancer Biother Radiopharm 1999; 14: 209.PubMedGoogle Scholar
  176. 176.
    Rosenblum MG,Macey D, Podoloff D et al. A phase I pharmacokinetic,toxicity and dosimetry study of 131I labeled IMMU-4 F(ab~)2 in patients with advanced colorectal carcinoma. Antibodies Immunoconj Radiopharm 1993; 6: 239–55.Google Scholar
  177. 177.
    Roswit B,Higgins G,Keehn RJ. Preoperative irradiation for carcinoma of the rectum and rectosigmoid colon: report of a National Veterans Administration study. Cancer 1975; 35: 1597–602.Google Scholar
  178. 178.
    Rotman M, Kuruvilla AM,Choi K et al. Response of colorectal hepatic metastases to concomitant radiotherapy and intravenous infusion 5 fluouracil. Int J Radiat Oncol Phys 1986; 12: 2179–87.Google Scholar
  179. 179.
    Salk D,Lesley T,Wiseman G et al. A phase I trial of a fractionated dose intraperitoneal administration of rhenium-186 monoclonal antibodies in ovarian cancer. Antibodies Immunoconj Radiopharm 1992; 4: 359 (abstract).Google Scholar
  180. 180.
    Sands H,Jones PL,Shah S et al. Correlation of vascular permeability and blood flow with Mab uptake by human Clouser and renal cell xenografts. Cancer Res 1988; 48: 188.Google Scholar
  181. 181.
    Santos O,Pant KD,Blank EW, Ceriani RL. 5-Iododeoxyuridine increases the efficacy of the radioimmunotherapy of human tumors growing in nude mice. J Nucl Med 1992; 33: 1530–4.Google Scholar
  182. 182.
    Schlom J, Molinolo A,Simpson JF et al. Advantages of dose fractionation in monoclonal antibody-targeted radioimmunotherapy. J Natl Cancer Inst 1990; 82: 763–71.PubMedGoogle Scholar
  183. 183.
    Schrier DM,Stemmer SM,Johnson T et al. High-dose 90Y Mx-diethylenetriaminepentaacetic acid (DPTA)-BrE-3 and autologous hematopoietic stem cell support (AHSCS) for the treatment of advanced breast cancer: a phase I trial. Cancer Res Suppl 1995; 55: 5921s.Google Scholar
  184. 184.
    Schubiger PA,Alberto R,Smith A. Vehicles, chelators, and radionuclides: choosing the ‘building blocks’ of an effective therapeutic radioimmunoconjugate. Bioconjug Chem 1996; 7: 165–79.Google Scholar
  185. 185.
    Schultz J, Lin Y,Sanderson J et al. A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res 2000; 60: 6663–9.PubMedGoogle Scholar
  186. 186.
    Schwartz MA,Lovett DR, Redner A et al. Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol 1993; 11: 294–303.Google Scholar
  187. 187.
    Schwartz SW, Connett JM,Anderson CJ et al. Evaluation of a direct method for technetium labeling of intact and F(ab~)2 1A3, an anticolorectal monoclonal antibody. Nucl Med Biol 1994; 21: 619–26.Google Scholar
  188. 188.
    Scott AM, Divgi CR,Kemeny N et al. Radioimmunotherapy with I-131 labeled monoclonal antibody CC49 in colorectal cancer. Eur J Nucl Med 1992; 8: 709.Google Scholar
  189. 189.
    Sodee DB, Malguria N, Faulhaber P,Resnick MI,Albert J, Bakale G. Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer. Urology 2000; 56: 988–93.PubMedGoogle Scholar
  190. 190.
    Stewart JSW, Hird V,Snook D et al. Intraperitoneal radioimmunotherapy for ovarian cancer: pharmacokinetics, toxicity, and efficacy of I-131 labeled monclonal antibodies. Int J Radiat Oncol Biol Phys 1989; 16: 405–13.PubMedGoogle Scholar
  191. 191.
    Stickney DR,Gridley DS,Kirk GA,Slater JM. Enhancement of monoclonal antibody binding to melanoma with single dose radiation or hyperthermia. Natl Cancer Inst Monogr 1985; 3: 47–52.Google Scholar
  192. 192.
    Stickney DR,Slater JB,Kirk GA et al. Bifunctional antibody: ZCE/CHA 111Indium BLEDTA-IV clinical imaging in colorectal carcinoma. Antibodies Immun Radiopharm 1989; 2: 1–13.Google Scholar
  193. 193.
    Su F-M, Lyen L, Breitz HB, Weiden PL, Fritzberg AR. 186 Rhenium MAG2GABA antibody radiolabeling for high dose radioimmunotherapy studies. Proceedings of the Fourth International Symposium on Technetium in Chemistry and Nuclear Medicine, Seminario Maggiore, Bressnanone,Italy, 12–14 September 1994. In: Nicolini M, Bandoli G, Mazzi U, eds. Technetium and Rhenium in Chemistry and Nuclear Medicine. Padova: SG Editorial, 1995: 511–17.Google Scholar
  194. 194.
    Surwit EA,Childers JM, Krag DN et al. Clinical assessment of 111In-CYT-103 immunoscintigraphy in ovarian cancer. Gynecol Oncol 1993; 48: 285–92.Google Scholar
  195. 195.
    Tempero M, Leichner P,Dalrymple G et al. High-dose therapy with iodine-131-labeled monoclonal antibody CC49 in patients with gastrointestinal cancers: a phase I trial. J Clin Oncol 1997; 15: 1518–28.PubMedGoogle Scholar
  196. 196.
    Theodore LJ, Fritzberg AR,Schultz JE,Axworthy DB. Evolution of a pretarget radioimmunotherapeutic regimen. In: Abrams PG, Fritzberg AR, eds. Radioimmunotherapy of Cancer. New York: Marcel Dekker, 2000: 195–221.Google Scholar
  197. 197.
    Tschmelitsch J, Barendswaard E,Williams C et al. Enhanced antitumor activity of combination radioimmunotherapy (131I-labeled monoclonal antibody A33) with chemotherapy (fluorouracil). Cancer Res 1997; 57: 2181–6.PubMedGoogle Scholar
  198. 198.
    Volkert WA, Goeckeler WF,Ehrhardt GJ, Ketring AR. Therapeutic radionuclides: production and decay property considerations. J Nucl Med 1991; 32: 174–85.PubMedGoogle Scholar
  199. 199.
    Vriesendorp HM Quadri SM. Radiolabeled immunoglobulin therapy in patients with Hodgkin’s disease. Cancer Biother Radiopharm 2000; 15: 431–46.PubMedGoogle Scholar
  200. 200.
    Wahl RL, Zasadny KR,MacFarlane D et al. Iodine-131 anti-B1 antibody for B-cell lymphoma: an update on the Michigan phase I experience. J Nucl Med 1998; 39: 21S - 7S.PubMedGoogle Scholar
  201. 201.
    Warhoe KA, DeNardo SJ, Wolkov HB et al. Evidence for external beam irradiation enhancement of radiolabeled monoclonal antibody uptake in breast cancer. Antibodies Immunoconj Radiopharm 1992; 5: 227–35.Google Scholar
  202. 202.
    Weiden PL, Breitz HB,Seiler CA et al. Rhenium-186- labeled chimeric antibody NR-LU-13: pharmacokinetics, biodistribution and immunogenicity relative to murine analog NR-LU-10. J Nucl Med 1993; 34: 2111–19.PubMedGoogle Scholar
  203. 203.
    Weiden PL,Wolf SB, Breitz HB et al. Human anti-mouse antibody suppression with Cyclosporin A. Cancer 1994; 73: 1093–7.Google Scholar
  204. 204.
    Weiden P, Breitz H,Appelbaum J et al. Radioimmunotherapy in the treatment of non-Hodgkin’s lymphoma (NHL): advantage of pretargeted RIT (PRIT). Cancer Biother Radiopharm 1999; 14: 316.Google Scholar
  205. 205.
    Welt S, Divgi CR,Kemeny N et al. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1994; 12: 1561–71.PubMedGoogle Scholar
  206. 206.
    Welt S,Scott AM, Divgi CR et al. Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1996; 14: 1787–97.Google Scholar
  207. 207.
    Wessels BW,Meares CF. Physical and chemical properties of radionuclide therapy. Semin Radiat Oncol 2000; 10: 115–22.Google Scholar
  208. 208.
    Wessels BW,Rogers RD. Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies. Med Phys 1984; 11: 638–45.Google Scholar
  209. 209.
    Wessels BW. Current status of animal radioimmunotherapy. Cancer Res 1990; 50: 970s - 3s.PubMedGoogle Scholar
  210. 210.
    Wheldon TE, O’Donoghue JA, Bartett A,Michalowski AS. The curability of tumours of differing size by targeted radiotherapy using 131I or 90Y. Radiother Oncol 1991; 21: 91–9.PubMedGoogle Scholar
  211. 211.
    Wilbur DS. Radiohalogenation of proteins: an overview of radionuclides,labeling methods and reagents for conjugate labeling. Bioconj Chem 1992; 3: 433–70.Google Scholar
  212. 212.
    Wiseman G,White C, Witzig T et al. Radioimmunotherapy of relapsed non-Hodgkin’s lymphoma with Zevalin, a 90Y-labeled anti CD 20 monoclonal antibody. Clin Cancer Res 1999; 5: 3281–6.Google Scholar
  213. 213.
    Withers HR,Peters LJ,Taylor JMG. Dose-response relationship for radiation therapy of subclinical disease. Int J Radiat Oncol Biol Phys 1977; 2: 129–32.Google Scholar
  214. 214.
    Witzig LT. The use of ibritumomab tiuxetan radioimmunotherapy for patients with relapsed B-cell non-Hodgkin’s lymphoma. Semin Oncol 2000; 27: 74–8.PubMedGoogle Scholar
  215. 215.
    Wong JYC, Yan X,Esteban JM,Shively JE. The effects of yttrium-90 low dose rate irradiation alone or in combination with 5-FU and cis-platinum (DDP) on human colon cancer cells in vitro. Antibodies Immunoconj Radiopharm 1992; 5: 357.Google Scholar
  216. 216.
    Wong JYC, Chu DZ, Yamauchi DM et al. A phase I radioimmunotherapy trial evaluating 90yttrium-labeled anti-carcinoembryonic antigen (CEA) chimeric T84.66 in patients with metastatic CEA-producing malignancies. Clin Cancer Res 2000; 10: 3855–63.Google Scholar
  217. 217.
    Wong JY, Somlo G, Odom-Maryon T et al. Initial results of a phase I trial evaluating yttrium-90 chimeric T84.66 anti-CEA antibody and autologous stem cell support in CEA-producing meastatic breast cancer. Clin Cancer Res 1995: 6: 3224s - 41s.Google Scholar
  218. 218.
    Wu AM, Yazaki PJ. Designer genes: recombinant antibody fragments for biological imaging. Q J Nucl Med 2000; 44: 268–83.PubMedGoogle Scholar
  219. 219.
    Yu B, Carrasquilo J, Milenic D et al. Phase I trial of iodine 131-labeled COL-1 in patients with gastrointestinal maliganacies: influence of serum carcinoembryonic antigen and tumor bulk on pharmacokinetics. J Clin Oncol 1996; 6: 1798–809.Google Scholar
  220. 220.
    Yazaki PJ, Wu AM,Tsai SW et al. Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 2001; 12: 220–8.PubMedGoogle Scholar
  221. 221.
    Yorke ED, Beaumier PL,Wessels BW, Fritzberg AR, Morgan AC Jr. Optimal antibody-radionuclide combinations for clinical radioimmunotherapy: a predictive model based on mouse pharmacokinetics. Nucl Med Biol 1991; 18: 827–35.Google Scholar
  222. 222.
    Zalutsky MR. Radiohalogenation of antibodies: chemical aspects. In: Srivastava SC, ed. Radiolabeled Monoclonal Antibodies for Imaging and Therapy. New York: Plenum Press, 1988.Google Scholar
  223. 223.
    Zalutzky MR,Moseley RP, Coakham HB,Coleman RE, Biner DD. Pharmacokinetics and tumor localization of 13 I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res 1989; 49: 2807–13.Google Scholar
  224. 223.
    Zalutsky MR, Bigner DD. Radioimmunotherapy with alpha-particle emitting radioimmunoconjugates. Acta Oncol 1996; 35: 373–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Hazel B. Breitz
  • Alan R. Fritzberg

There are no affiliations available

Personalised recommendations