Advertisement

Disorders of the metabolism of larger molecules

  • M. J. Eadie
  • J. H. Tyrer
Chapter

Abstract

Neural tissue contains a variety of large molecules which have a number of known biological functions, as well as often providing a basis for cell structure. Proteins function both as enzymes and as receptors for the attachment of other molecules and the subsequent transduction of this attachment into further biochemical events; nucleic acids convey genetic information; carbohydrates (as glycogen) are stores of energy, and lipids appear to have structural, permeability (membrane) and insulating functions (e.g. myelin). In addition, neural tissue contains complex macromolecules formed from admixture of protein, carbohydrate and lipid components, e.g. lipoproteins, glycoproteins, glycos-aminoglycans (mucopolysaccharides) and glycolipids. Individual macro-molecules may exist in cells bonded into even larger and more complex macromolecule aggregates. For convenience, biological macromolecules are often considered in terms of their individual components which are chemically stable enough to be able to exist in isolation after preliminary separation procedures. Such components are themselves usually comparatively large molecules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Norton, W. T. (1976). Formation, structure and biochemistry of myelin. In Siegel, G. J., Albers, R. W., Kratzmen, R. and Agranoff, B. W. (eds.) Basic Neurochemistry, 2nd Edn., pp. 74–99. (Boston: Little, Brown & Co.)Google Scholar
  2. 2.
    Mcllwain, H. and Bachelard, H. S. (1971). Biochemistry and the Central Nervous System. 4th Edn. (Edinburgh: Churchill-Livingstone)Google Scholar
  3. 3.
    Stoffel, W. (1967). The chemistry of mammalian lipids. In Schettler, G. (ed.) Lipids and Lipidoses, pp. 1–39. (Berlin: Springer)Google Scholar
  4. 4.
    Rouser, G. and Yamamoto, A. (1969). Lipids. In Lathja, A. (ed.) Handbook of Neurochemistry. Vol. 1, pp. 121–169. (New York: Plenum Press)Google Scholar
  5. 5.
    Awasthi, Y. C. and Srivastava, S. K. (1980). Structure, function and metabolism of glycosphin-golipids. In Kumar, S. (ed.) Biochemistry of Brain, pp. 1–20. (Oxford: Pergamon Press)Google Scholar
  6. 6.
    Max, S. R., MacLaren, N. K., Brady, R. O., Bradley, R. M., Rennels, M. B., Tanaka, J., Garcia, J. H. and Cornblath, M. (1974). GM3 (hematoside) sphingolipodystrophy. N. Engl. J. Med., 291, 929–931PubMedGoogle Scholar
  7. 7.
    Schaumburg, H. H., Powers, J. M., Raine, C. S., Suzuki, K. and Richardson, E. P. Jr. (1975). Adrenoleucodystrophy. A clinical and pathological study of 17 cases. Arch. Neurol., 32, 577–591.PubMedGoogle Scholar
  8. 8.
    O’Neill, B. P., Marmion, L. C. and Feringa, E. R. (1981). The adrenoleukomyeloneuropathy complex: expressions in four generations. Neurology, 31, 151–156PubMedGoogle Scholar
  9. 9.
    Igarashi, M., Schaumburg, H. H., Powers, J., Kishimoto, Y., Kolodney, E. and Suzuki, K. (1976). Fatty acid abnormality in adrenoleukodystrophy. J. Neurochem., 26, 851–860PubMedGoogle Scholar
  10. 10.
    Menkes, J. H. and Corbo, L. M. (1977). Adrenoleucodystrophy. Accumulation of cholesterol esters with very long chain fatty acids. Neurology, 27, 926–932Google Scholar
  11. 11.
    Molzer, B., Bernheimer, H., Budka, H., Pilz, P. and Toifl, K.(1981). Accumulation of very long chain fatty acids is common to 3 variants of adrenoleukodystrophy (ALD). ‘Classical’ ALD, atypical ALD (female patient) and adrenomyeloneuropathy. J. Neurol. Sci., 51, 301–310PubMedGoogle Scholar
  12. 12.
    Ogino, T. and Suzuki, K. (1981). Specificities of human and rat brain enzymes of cholesterol ester metabolism towards very long chain fatty acids: implication for biochemical pathogenesis of adrenoleucodystrophy. J. Neurochem., 36, 776–779PubMedGoogle Scholar
  13. 13.
    Yahara, S., Moser, H. W., Kolodny, E. H. and Kishimoto, Y. (1980). Reverse phase high-performance liquid chromatography of cerebrosides, sulfatides and ceramides: microanalysis of homolog composition without hydrolysis and application to cerebroside analysis in peripheral nerves of adrenoleucodystrophy patients. J. Neurochem., 34, 694–699PubMedGoogle Scholar
  14. 14.
    Schaumburg, H. H., Powers, J. M., Raine, C. S., Spencer, P. S., Griffin, J. W., Prineas, J. W. and Boehme, D. M. (1977). Adrenomyeloneuropathy: a probable variant of adrenoleucodystrophy. II. General pathologic, neuropathology, and biochemical aspects. Neurology, 27, 1114–1119PubMedGoogle Scholar
  15. 15.
    Manz, H. J., Schuelein, M., McCullogh, D. C., Kishimoto, Y. and Eiben, R. M. (1980). New phenotypic variant of adrenoleucodystrophy. Pathologic, ultrastructural and biochemical study in two brothers. J. Neurol. Sci., 45, 245–260PubMedGoogle Scholar
  16. 16.
    Griffin, J. W., Goren, E., Schaumburg, H., Engel, W. R. and Loriaux, L. (1977). Adrenomyeloneuropathy: a probable variant of adrenoleukodystrophy. I. Clinical and endocrinologic aspects. Neurology, 27, 1107–1113PubMedGoogle Scholar
  17. 17.
    Bourre, J. M., Bornhofen, J. H., Araoz, C. A., Daudu, O. and Baumann, N. A. (1978). Pelizaeus-Merzbacher disease: brain lipid and fatty composition. J. Neurochem., 30, 719–727PubMedGoogle Scholar
  18. 18.
    Witter, B., Debuch, H. and Klein, H. (1980). Lipid investigation of central and peripheral nervous system in connatal Pelizaeus-Merzbacher’s disease. J. Neurochem., 34, 957–962PubMedGoogle Scholar
  19. 19.
    Kahlke, W. (1967). A-β-lipoproteinemia (Bassen-Kornzweig syndrome). In Schettler, G. (ed.) Lipids and Lipidoses, pp. 382–400. (Berlin: Springer)Google Scholar
  20. 20.
    Bruyn, G. W. (1977). Bassen-Kornzweig disease. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 401–429. (Amsterdam: North Holland)Google Scholar
  21. 21.
    Herbert, P. N., Gotto, A. M. and Fredrickson, D. S. (1978). Familial lipoprotein deficiency (abetalipoproteinemia, hypobetalipoproteinemia, and Tangier disease). In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 544–588. (New York: McGraw-Hill)Google Scholar
  22. 22.
    Scanu, A. M. (1978). Abetalipoproteinemia and hypobetalipoproteinemia: what is the primary defect? In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology, Vol. 21, pp. 125–130. (New York: Raven Press)Google Scholar
  23. 23.
    Illingworth, D. R., Connor, W. E. and Miller, R. G. (1980). Abetalipoproteinemia. Report of two cases and review of therapy. Arch. Neurol., 37, 659–662PubMedGoogle Scholar
  24. 24.
    Steinberg, D. (1978). Phytanic acid storage disease: Refsum’s syndrome. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 688–706. (New York: McGraw-Hill)Google Scholar
  25. 25.
    Steinberg, D. (1978). Evaluation of the metabolic error in Refsum’s disease: strategy and tactics. In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology. Vol. 21, pp. 113–124. (New York: Raven Press)Google Scholar
  26. 26.
    Warren, L. (1967). The metabolism of sialic acids. In Aronson, S. M. and Volk, B. W. (eds.) Inborn Errors of Sphingolipid Metabolism, pp. 251–259. (Oxford: Pergamon)Google Scholar
  27. 27.
    Svennerholm, L. (1972). Gangliosides, isolation. In Whistler, R. L. and Bemiller, J. N. (eds.) Methods in Carbohydrate Chemistry. Vol. 4, pp. 464–474. (New York: Academic Press)Google Scholar
  28. 28.
    Hers, H. G. and Van Hoof, F. (1973). Lysosomes and Storage Diseases. (New York: Academic Press)Google Scholar
  29. 29.
    Neufeld, E. F., Lim, T. W. and Shapiro, L. J. (1975). Inherited disorders of lysosomal metabolism. Annu. Rev. Biochem., 44, 357–376PubMedGoogle Scholar
  30. 30.
    Crome, L. and Stern, J. (1976). Inborn lysosomal enzyme deficiencies. In Blackwood, W. and Corsellis, J. A. N. (eds.) Greenfield’s Neuropathology. 3rd Edn., pp. 500–580. (London: Arnold)Google Scholar
  31. 31.
    Brady, R. O. (1978). Sphingolipidoses. Annu. Rev. Biochem., 47, 687–713PubMedGoogle Scholar
  32. 32.
    O’Brien, J. S. (1978). The gangliosidoses. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease, 4th Edn., pp. 841–865. (New York: McGraw-Hill)Google Scholar
  33. 33.
    Van Hoof, F. (1973). GM1 gangliosidosis. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 305–321. (New York: Academic Press)Google Scholar
  34. 34.
    O’Brien, J. S. (1975). Molecular genetics of GM1-galactosidase. Clin. Genet., 8, 303–313PubMedGoogle Scholar
  35. 35.
    Farrell, D. F. and MacMartin, M. P. (1981). GM1 gangliosidosis: enzymatic variation in a single family. Ann. Neurol., 9, 232–236PubMedGoogle Scholar
  36. 36.
    Farrell, D. F. and Ochs, U. (1981). GM1 gangliosidosis: phenotypic variation in a single family. Ann. Neurol., 9, 225–231PubMedGoogle Scholar
  37. 37.
    Volk, B. W., Adachi, M. and Schneck, L. (1971). The gangliosidoses. In Zimmerman, H. (ed.) Progress in Neuropathology. Vol. 1, pp. 232–254. (New York: Grune and Stratton)Google Scholar
  38. 38.
    O’Brien, J. S. (1973). Tay-Sachs’ disease and juvenile GM2 gangliosidoses. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 323–344. (New York: Academic Press)Google Scholar
  39. 39.
    Srivastava, S. K. and Awasthi, Y. C. (1980). Metabolic disorders in sphingolipidoses. In Kumar, S. (ed.) Biochemistry of Brain, pp. 21–47. (Oxford: Pergamon Press)Google Scholar
  40. 40.
    Goldman, J. E., Katz, D., Rapin, I., Purpura, D. P. and Suzuki, K. (1981). Chronic GM1 gangliosidosis presenting as dystonia. 1. Clinical and pathological features. Ann. Neurol., 9, 465–475PubMedGoogle Scholar
  41. 41.
    O’Brien, J. S., Bernett, J., Veath, M. L. and Paa, D. (1975). Lysosomal storage disorders. Diagnosis by ultrastructural examination of skin biopsy specimens. Arch. Neurol, 32, 592–599PubMedGoogle Scholar
  42. 42.
    Roizin, L. and Kaufman, M. A. (1971). Dyslipidoses. In Minckler, J. (ed.) Pathology of the Nervous system. Vol. 2, pp. 1284–1314. (New York: McGraw-Hill)Google Scholar
  43. 43.
    Rapin, J., Suzuki, K., Suzuki, K. and Valsamis, M. P. (1976). Adult (chronic) GM2 gangliosidosis. Atypical spinocerebellar degeneration in a Jewish sibship. Arch. Neurol, 33, 120–130PubMedGoogle Scholar
  44. 44.
    Bernheimer, H., Molzer, B. and Deisenhammer, E. (1977). Sandhoff disease: ganglioside GM2 and asialo-GM2 accumulation in the cerebrospinal fluid. J. Neurochem., 29, 351–352PubMedGoogle Scholar
  45. 45.
    Von Specht, B. U., Geiger, B., Arnon, R., Passwell, J., Keren, G., Goldman, B. and Padeh, B. (1979). Enzyme replacement in Tay-Sachs’ disease. Neurology, 29, 848–854Google Scholar
  46. 46.
    Sandhoff, K. and Harzer, K. (1973). Total hexosaminidase deficiency in Tay-Sachs’ disease (Variant O). In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 346–356. (New York: Academic Press)Google Scholar
  47. 47.
    Johnson, W. G., Chutorian, A. and Miranda, A. (1977). A new juvenile hexoseaminidase deficiency disease presenting as cerebellar ataxia. Neurology, 27, 1012–1018.PubMedGoogle Scholar
  48. 48.
    Tsay, G. C. and Dawson, G. (1976). Oligosaccharide storage in brains from patients with fucosidosis, GM1-gangliosidosis and GM2-gangliosidosis (Sandhoff’s disease). J. Neurochem., 27, 733–740PubMedGoogle Scholar
  49. 49.
    MacLeod, P. M., Wood, S., Jan, J. E., Applegarth, D. A. and Dolman, C. L. (1977). Progressive cerebellar ataxia, spasticity, psychomotor retardation and hexoseaminidase deficiency in a 10-year-old child: juvenile Sandhoff disease. Neurology, 27, 571–573PubMedGoogle Scholar
  50. 50.
    O’Neill, B., Butler, A. B., Young, E., Falk, P. M. and Bass, N. H. (1978). Adult-onset GM2 gangliosidosis. Neurology, 28, 1117–1123PubMedGoogle Scholar
  51. 51.
    Johnson, W. G. and Chutorian, A. M. (1978). Inheritance of the enzyme defect in a new hexoseaminidase deficiency disease. Ann. Neurol, 4, 399–403PubMedGoogle Scholar
  52. 52.
    MacLaren, N. K., Max, S. R., Cornblath, M., Brady, R. O., Ozand, P. T., Campbell, J, Rennels, M., Mergner, W. J. and Garcia, J. H. (1976). GM3 gangliosidosis: a novel human sphingolipody-strophy. Pediatrics, 57, 106–110PubMedGoogle Scholar
  53. 53.
    Tanaka, J., Garcia, J. H., Max, S. R., Viloria, J. E., Kamijo, Y., MacLaren, N. K., Cornblath, M. and Brady, R. O. (1975). Cerebral sponginess and GM3 gangliosidosis. Ultrastructure and probable pathogenesis. J. Neuropathol. Exp. Neurol, 34, 249–262PubMedGoogle Scholar
  54. 54.
    Carter, T. P., Beblowski, D. W., Savage, M. H. and Kanfer, J. N. (1980). Human brain cerebroside β-galactosidase: deficiency of transgalactosidic activity in Krabbe’s disease. J. Neurochem., 34, 189–196PubMedGoogle Scholar
  55. 55.
    Kint, J. A. and Carton, D. (1973). Fabry’s disease. In Hers, H. G. and Van Hoof, F. (eds.). Lysosomes and Storage Diseases, pp. 357–380. (New York: Academic Press)Google Scholar
  56. 56.
    Desnick, R. J., Klionsky, B. and Sweeley, C. C. (1978). Fabry’s disease (α-galactosidase A deficiency). In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 810–840. (New York: McGraw-Hill)Google Scholar
  57. 57.
    Grunnet, M. L. and Spilsbury, P. R. (1973). The central nervous system in Fabry’s disease. Arch. Neurol, 28, 231–234PubMedGoogle Scholar
  58. 58.
    Sheth, K. J. and Swick, H. M. (1980). Peripheral nerve conduction in Fabry’s disease. Ann. Neurol., 7, 319–323PubMedGoogle Scholar
  59. 59.
    Schettler, G. and Kahlke, W. (1967). Gaucher’s disease. In Schettler, G. (ed.) Lipids and Lipidosis, pp. 260–287. (Berlin: Springer)Google Scholar
  60. 60.
    Brady, R. O. (1978). Glucosyl ceramide lipidosis, Gaucher’s disease. In Stanbury, J. B., Wyngaarten, J. B. and Frederickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 731–746. (New York: McGraw Hill)Google Scholar
  61. 61.
    Nishimura, R., Omos-Lau, N., Ajmone-Marsan, C. and Barranger, J. A. (1980). Electroencephalographic findings in Gaucher’s disease. Neurology, 30, 152–159PubMedGoogle Scholar
  62. 62.
    Robinson, D. B. and Glew, R. H. (1980). Acid phosphatase in Gaucher’s disease. Clin. Chem., 26, 371–382PubMedGoogle Scholar
  63. 63.
    Austin, J. (1973). Metachromatic leucodystrophy (sulfatide lipidosis). In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 412–437. (New York: Academic Press)Google Scholar
  64. 64.
    Dulaney, J. T. and Moser, H. W. (1978). Sulfatide lipidosis: metachromatic leukodystrophy. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 770–809. (New York: McGraw-Hill)Google Scholar
  65. 65.
    Farrell, D. F., MacMartin, M. P. and Clark, A. F. (1979). Multiple molecular forms of arylsulphatase A in different forms of metachromatic leucodystrophy (MLD). Neurology, 29, 16–20PubMedGoogle Scholar
  66. 66.
    Poser, C. M. (1968). Diseases of the myelin sheath. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 1, pp. 767–821. (New York: McGraw-Hill)Google Scholar
  67. 67.
    Percy, A. K., Kaback, M. M. and Herndon, R. M. (1977). Metachromatic leukodystrophy: comparison of early and late onset forms. Neurology, 27, 933–941PubMedGoogle Scholar
  68. 68.
    Haltia, T., Palo, J., Haltia, M. and Icen, A. (1980). Juvenile metachromatic leukodystrophy. Clinical, biochemical and neuropathologic studies in nine new cases. Arch. Neurol., 37, 42–46PubMedGoogle Scholar
  69. 69.
    Buonanno, F. S., Ball, M. R., Laster, D. W., Moody, D. M. and McLean, W. T. (1978). Computed tomography in late-infantile metachromatic leukodystrophy. Ann. Neurol., 4, 43–46PubMedGoogle Scholar
  70. 70.
    Raghavan, S. S., Gajewski, A. and Kolodny, E. H. (1981). Leukocyte sulfatidase for the reliable diagnosis of metachromatic leukodystrophy. J. Neurochem., 36, 724–731PubMedGoogle Scholar
  71. 71.
    Suzuki, K. and Suzuki, Y. (1978). Galactosylceramide lipidoses: globoid cell leukodystrophy (Krabbe’s disease). In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 747–769. (New York: McGraw-Hill)Google Scholar
  72. 72.
    Philippart, M. (1978). Clinical and biochemical pathophysiology of ataxia in the sphin-golipidoses. In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology. Vol. 21, pp. 131–149. (New York: Raven Press)Google Scholar
  73. 73.
    Dickerman, L. H., Kurczynski, T. W. and MacBride, R. G. (1981). The effect of psychosine upon growth of human skin fibroblasts from patients with globoid cell leukodystrophy. J. Neurol. Sci., 50, 181–190PubMedGoogle Scholar
  74. 74.
    Austin, J. H. (1968). Globoid (Krabbe) leukodystrophy. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 1, pp. 843–858. (New York: McGraw-Hill)Google Scholar
  75. 75.
    Dunn, H. G., Dolman, C. L., Farrell, D. F., Tischler, B., Hasinoff, C. and Woolf, L. I. (1976). Krabbe’s leukodystrophy without globoid cells. Neurology, 26, 1035–1041PubMedGoogle Scholar
  76. 76.
    Svennerholm, L., Vanier, M-T., Hakansson, G. and Mansson, J-E. (1981). Use of leukocytes in diagnosis of Krabbe disease and detection of carriers. Clin. Chim. Acta, 112, 333–342PubMedGoogle Scholar
  77. 77.
    Brady, R. O. and King, F. M. (1973). Niemann-Pick’s disease. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 439–452. (New York: Academic Press)Google Scholar
  78. 78.
    Brady, R. O. (1978). Sphingomyelin lipidosis: Niemann-Pick disease. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 718–730. (New York: McGraw-Hill)Google Scholar
  79. 79.
    Kennedy, J. F. (1976). Chemical and biochemical aspects of the glycosaminoglycans and proteoglycans in health and disease. Adv. Clin. Chem., 18, 1–101PubMedGoogle Scholar
  80. 80.
    Lindahl, U. and Höök, M. (1978). Glycosaminoglycans and their binding to biological macromolecules. Annu. Rev. Biochem., 47, 385–417PubMedGoogle Scholar
  81. 81.
    McKusick, V. A., Neufeld, E. F. and Kelly, T. E. (1978). The mucopolysaccharide storage diseases. In Stanbury, J. B., Wyngaarten, J. G. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 1282–1307. (New York: McGraw-Hill)Google Scholar
  82. 82.
    Van Hoof, F. (1973). Mucopolysaccharidoses. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 218–259. (New York: Academic Press)Google Scholar
  83. 83.
    Dawson, G. and Lenn, N. J. (1976). Polysaccharide metabolism disorders. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 27, pp. 143–168. (Amsterdam: North Holland)Google Scholar
  84. 84.
    Dorfman, A. and Matalon, R. (1976). The mucopolysaccharidoses (a review). Proc. Natl. Acad. Sci, USA, 73, 630–637PubMedGoogle Scholar
  85. 85.
    Kint, J. A., Dacremont, G., Carton, D., Orye, E. and Hooft, C. (1973). Mucopolysaccharidosis: secondarily induced abnormal distribution of lysosomal isoenzymes. Science, 181, 352–354PubMedGoogle Scholar
  86. 86.
    Winters, P. R., Harrod, M. J., Molenich-Heetred, S. A., Kirkpatrick, J. and Rosenberg, R. N. (1976). α-L-Iduronidase deficiency and possible Hurler-Scheie genetic compound. Clinical, pathologic, and biochemical findings. Neurology, 26, 1003–1007PubMedGoogle Scholar
  87. 87.
    Nwokoro, N. and Neufeld, E. F. (1979). Detection of Hunter heterozygotes by enzymatic analysis of hair roots. Am. J. Hum. Genet., 31, 42–49PubMedCentralPubMedGoogle Scholar
  88. 88.
    Taori, G. M., Iyer, G. V., Mokashi, S., Balasubramanian, K. A., Cherian, R., Chandi, S., Job, C. K. and Bachhawat, B. K. (1972). Sanfillipo syndrome (mucopolysaccharidosis — III). J. Neurol. Sci., 17, 323–345PubMedGoogle Scholar
  89. 89.
    Dekaban, A. S. and Constantopoulos, G. (1977). Mucopolysaccharidosis Types I, II, IIIA and V. Pathological and biochemical abnormalities in the neural and mesenchymal elements of the brain. Acta Neuropathol., 39, 1–7PubMedGoogle Scholar
  90. 90.
    Constantopoulos, G., Eiben, R. M. and Schäfer, I. A. (1978). Neurochemistry of the mucopolysaccharidoses: brain glycoaminoglycans, lipids and lysosomal enzymes in mucopolysac-charoidosis type HIB (α-N-acetylglucosamidase deficiency). J. Neurochem., 31, 1215–1222PubMedGoogle Scholar
  91. 91.
    Hadfield, M. G., Ghatak, N. R., Nakoneczna, I., Lippman, H. R., Myer, E. C., Constantopoulos, G. and Bradley, R. M. (1980). Pathologic findings in mucopolysaccharidosis type HIB (Sanfillipo’s syndrome B). Arch. Neurol., 37, 645–650PubMedGoogle Scholar
  92. 92.
    Koto, A., Horwitz, A. L., Suzuki, K., Tiffany, C. W. and Suzuki, K. (1978). The Morquio syndrome: neuropathology and biochemistry. Ann. Neurol., 4, 26–36PubMedGoogle Scholar
  93. 93.
    Pilz, H., Von Figura, K. and Goebel, H. H. (1979). Deficiency of arylsulfatase B in 2 brothers aged 40 and 38 years (Maroteaux-Lamy syndrome, type B). Ann. Neurol., 6, 315–325PubMedGoogle Scholar
  94. 94.
    Sly, W. S., Quinton, B. A., McAlister, W. H. and Rimoin, D. L. (1973). Beta-glucuronidase deficiency. Report of clinical, radiologic and biochemical features of a new mucopolysaccharidosis. J. Pediatr., 82, 249–257PubMedGoogle Scholar
  95. 95.
    Spranger, J. and Wiedermann, H. (1970). The genetic mucolipidoses. Hum. Genet., 9, 113–139Google Scholar
  96. 96.
    Spranger, J., Gehler, J. and Cantz, M. (1977). Mucolipidosis 1 — a sialidosis. Am. J. Med. Genet., 1, 21–29Google Scholar
  97. 97.
    Ockerman, P. A. (1973). Mannosidosis. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 291–304. (New York: Academic Press)Google Scholar
  98. 98.
    Sung, J. H., Hayano, M. and Desnick, R. J. (1977). Mannosidosis: pathology of the nervous system. J. Neuropathoi. Exp. Neurol., 36, 807–820Google Scholar
  99. 99.
    Van Hoof, F. (1973). Fucosidosis. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 277–290. (New York: Academic Press)Google Scholar
  100. 100.
    Van Hoof, F. and Hers, H. G. (1973). Other lysosomal storage disorders. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 554–573. (New York: Academic Press)Google Scholar
  101. 101.
    Shih, V. (1977). Miscellaneous metabolic disorders involving amino acids and organic acids. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 195–243. (Amsterdam: North Holland)Google Scholar
  102. 102.
    Maury, C. P. J., Haltia, M. and Palo, J. (1981). Regional distribution of glycoasparagine storage material in the brain in aspartylglycosaminuria. J. Neurol. Sci., 50, 291–298PubMedGoogle Scholar
  103. 103.
    Austin, J. H. (1973). Studies in metachromatic leukodystrophy. XII. Multiple sulfatase deficiency. Arch. Neurol., 28, 258–264PubMedGoogle Scholar
  104. 104.
    Eto, Y., Meier, C. and Herschkowitz, N. N. (1976). Chemical composition of brain and myelin in two patients with multiple sulphatase deficiency (a variant from metachromatic leukodystrophy). J. Neurochem., 27, 1071–1076PubMedGoogle Scholar
  105. 105.
    Eto, Y., Owada, M., Kitigawa, T., Kokubun, Y. and Rennert, O. M. (1979). Neurochemical abnormality in I-cell disease: chemical analysis and a possible importance of beta-galactosidase deficiency. J. Neurochem., 32, 397–405PubMedGoogle Scholar
  106. 106.
    Miller, A. L., Levitt, P., Ingraham, H., Converse, J. and Lewis, L. (1979). Properties of acid-β-D-galactosidase isolated from I-cell disease brain and spleen. J. Neurochem., 32, 1479–1485PubMedGoogle Scholar
  107. 107.
    Martin, J. J., Leroy, J. G., Farriaux, J. P., Fontaine, G., Desnick, R. J. and Cabello, H. (1975). I-cell disease (mucolipidosis II). A report on its pathology. Acta Neuropathol., 33, 285–305PubMedGoogle Scholar
  108. 108.
    Lowden, J. A. and O’Brien, J. S. (1979). Sialidosis: a review of human neuramidase deficiency. Am. J. Hum. Genet., 31, 1–18PubMedCentralPubMedGoogle Scholar
  109. 109.
    Federico, A., Cecio, A., Apponi Battim, G., Michalski, J. C., Strecker, G. and Guazzi, G. C. (1980). Macular cherry-red spot and myoclonus syndrome. Juvenile form of sialidosis. J. Neurol. Sci., 48, 157–169PubMedGoogle Scholar
  110. 110.
    Franceschetti, S., Uziel, G., Di Donato, S., Caimi, L. and Avanzini, G. (1980). Cherry-red spot myoclonus syndrome and a-neuraminidase deficiency: neurophysiological, pharmacological and biochemical study in an adult. J. Neurol. Neurosurg. Psychiatry., 43, 934–940PubMedGoogle Scholar
  111. 111.
    Steinman, L., Tharp, B. R., Dorfman, L. J., Forno, L. S., Sogg, R. L., Kelts, K. A. and O’Brien, J. S. (1980). Peripheral neuropathy in the cherry-red spot-myoclonus syndrome (sialidosis type 1). Ann. Neurol., 7, 450–456PubMedGoogle Scholar
  112. 112.
    Zeman, W. and Siakotos, A. N. (1973). The neuronal ceroid-lipofuscinoses. In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 519–551. (New York: Academic Press)Google Scholar
  113. 113.
    Swaiman, K. F., Garg, B. P. and Lockman, L. A. (1975). Sea-blue histiocyte and posterior column dysfunction: a familial disorder. Neurology, 25, 1064–1067Google Scholar
  114. 114.
    Ryan, G. B., Anderson, R. McD., Menkes, J. H. and Dennett, X. (1970). Lipofuscin (ceroid) storage disease of the brain. Neuropathological and neurochemical studies. Brain, 93, 617–628PubMedGoogle Scholar
  115. 115.
    Jervis, G. A. and Pullarkat, R. K. (1978). Pigment variant of lipofuscinoses. Neurology, 28, 500–503PubMedGoogle Scholar
  116. 116.
    Greenwood, R. S. and Nelson, J. S. (1978). Atypical neuronal ceroid-lipofuscinosis. Neurology, 28, 710–717PubMedGoogle Scholar
  117. 117.
    Noonan, S. M., Desousa, J. and Riddle, J. M. (1978). Lymphocyte ultrastructure in two cases of neuronal ceroid-lipofuscinosis. Neurology, 28, 472–477PubMedGoogle Scholar
  118. 118.
    Miley, C. E., Gilbert, E. F., France, T. D., O’Brien, J. F. and Chun, R. W. M. (1978). Clinical and extraneural histologic diagnosis of neuronal ceroid-lipofuscinosis. Neurology, 28, 1008–1012PubMedGoogle Scholar
  119. 119.
    Pilz, H., Schwendemann, G. and Goebel, H. H. (1978). Diagnostic significance of myeloperoxidase assay in neuronal ceroid-lipofuscinoses (Batten-Vogt syndrome). Neurology, 28, 924–927PubMedGoogle Scholar
  120. 120.
    Schwerer, B. and Bernheimer, H. (1978). Leukocyte PPD-peroxidase activity with polyunsaturated fatty acid hydroperoxides: normal values in Batten’s disease. J. Neurochem., 31, 457–460PubMedGoogle Scholar
  121. 121.
    Glenner, G. G., Ignaczak, T. F. and Page, D. L. (1978). The inherited systemic amyloidoses and localized amyloid deposits. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 1308–1339. (New York: McGraw-Hill)Google Scholar
  122. 122.
    Shoji, S. and Okano, A. (1981). Amyloid fibril protein in familial amyloid polyneuropathy. Neurology, 31, 186–190PubMedGoogle Scholar

Copyright information

© M. J. Eadie and J. H. Tyrer 1983

Authors and Affiliations

  • M. J. Eadie
    • 1
  • J. H. Tyrer
  1. 1.Department of MedicineUniversity of QueenslandBrisbaneAustralia

Personalised recommendations