Advertisement

Disorders of the energy pathway and the metabolic intermediate pool

  • M. J. Eadie
  • J. H. Tyrer
Chapter

Abstract

Neural tissue obtains almost all its energy from the oxidative metabolism of glucose. The whole human brain consumes about 50 ml of oxygen per minute, some 20% of the body’s total oxygen requirement under basal conditions. This oxygen is required to provide energy by oxidatively metabolizing the 72 mg per minute of glucose that the brain takes up over the same time interval1. In certain circumstances acetyl groups (CH3.CO—) and keto acids (R′—CO—R″—COOH), derived respectively from fatty acids by β-oxidation and from amino acids by oxidative deamination, can be used to provide energy. Energy is stored in the form of high energy phosphate (adenosine triphosphate, i.e. ATP). Skeletal muscle can make more extensive use of fatty acids as an energy source than can neural tissue.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sacks, W. (1969). Cerebral metabolism in vivo. In Lajtha, A. (ed.) Handbook of Neurochemistry. Vol. 1, pp. 301–324. (New York: Plenum Press)Google Scholar
  2. 2.
    Austin, J. H. (1972). Disorders of glycogen and related macromolecules in the nervous system. In Lajtha, A. (ed.) Handbook of Neurochemistry. Vol. 7, pp. 1–15. (New York: Plenum Press)Google Scholar
  3. 3.
    Austin, J. and Sakai, M. (1976). Disorders of glycogen and related macromolecules in the nervous system. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 27, pp. 169–219. (Amsterdam: North Holland)Google Scholar
  4. 4.
    Robitaille, Y., Carpenter, S., Karpati, G. and Dimauro, S. (1980). A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral processes and astrocytes. Brain, 103, 315–336PubMedGoogle Scholar
  5. 5.
    Seitelberger, F. (1968). Myoclonus body disease. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 1, pp. 1121–1134. (New York: McGraw-Hill)Google Scholar
  6. 6.
    Peress, N. S., DiMauro, S. and Roxburgh, V. A. (1979). Adult polysaccharidosis. Clinicopath-ological, ultrastructural, and biochemical features. Arch. Neurol. 36, 840–845PubMedGoogle Scholar
  7. 7.
    Nishimura, R. N., Ishak, K. G., Reddick, R., Porter, R., James, S. and Barranger, J. A. (1980). Lafora disease: diagnosis by liver biopsy. Ann. Neurol., 8, 409–415PubMedGoogle Scholar
  8. 8.
    Howell, R. R. (1978). The glycogen storage disease. In Stanbury, J. B., Wyngaarten, J. B. and Frederickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn. pp. 137–159. (New York: McGraw-Hill)Google Scholar
  9. 9.
    Hug, G. (1979). Five lysosomal disorders. Pharmacol. Rev., 30, 565–591Google Scholar
  10. 10.
    Hers, H. G. and De Barsy, T. (1973). Type II glycogenosis (acid maltase deficiency). In Hers, H. G. and Van Hoof, F. (eds.) Lysosomes and Storage Diseases, pp. 197–216. (New York: Academic Press)Google Scholar
  11. 11.
    Danon, M. J., Shin, O. J., DiMauro, S., Manaligod, J. R., Estwood, A., Naidu, S. and Schliselfeld, L. H. (1981). Lysosomal glycogen storage disease with normal acid maltase. Neurology, 31, 51–57PubMedGoogle Scholar
  12. 12.
    Engel, A. G. (1970). Acid maltase deficiency in adults: studies in four cases of a syndrome which may mimic muscular dystrophy or other myopathies. Brain, 93, 599–616PubMedGoogle Scholar
  13. 13.
    Sivak, E. D., Salanga, V. D., Wilbourn, A. J., Mitsumoto, H. and Golish, J. (1981). Adult-onset acid maltase deficiency presenting as diaphragmatic paralysis. Ann. Neurol., 9, 613–615PubMedGoogle Scholar
  14. 14.
    O’Brien, J. S., Bernett, J., Veath, M. L. and Paa, D. (1975). Lysosomal storage disorders. Diagnosis by ultrastructural examination of skin biopsy specimens. Arch. Neurol., 32, 592–599PubMedGoogle Scholar
  15. 15.
    Shanske, S. and Di Mauro, S. (1981). Late-onset acid maltase deficiency. Biochemical studies of leukocytes. J. Neurol. Sci., 50, 57–62PubMedGoogle Scholar
  16. 16.
    Schotland, D. L., Spiro, D., Rowland, L. P. and Carmel, P. (1965). Ultrastructural studies of muscle in McArdle’s disease. J. Neuropathol. Exp. Neurol., 24, 629–644PubMedGoogle Scholar
  17. 17.
    Di Mauro, S. and Hartlage, P. L. (1978). Fatal infantile form of muscle Phosphorylase deficiency. Neurology, 28, 1124–1129Google Scholar
  18. 18.
    Rowland, L. P., Lovelace, R. E., Schotland, D. L., Araki, S. and Carmel, P. (1966). The clinical diagnosis of the McArdle’s disease. Neurology, 16, 93–100PubMedGoogle Scholar
  19. 19.
    Murase, I., Ikeda, H., Muro, I., Nakao, K. and Subita, H. (1973). Myopathy associated with Type III glycogenosis. J. Neurol. Sci., 20, 287–295PubMedGoogle Scholar
  20. 20.
    Brooke, M. (1977). A Clinician’s View of Neuromuscular Diseases. (Baltimore: Williams and Wilkins)Google Scholar
  21. 21.
    Di Mauro, S., Hartwig, G. B., Hays, A., Eastwood, A. B., Franco, R., Olarte, M., Chang, M., Roses, A. D., Fetell, M., Schoenfeldt, R. S. and Stern, L. Z. (1979). Debrancher deficiency: neuromuscular disorder in 5 adults. Ann. Neurol., 5, 422–436Google Scholar
  22. 22.
    Zellweger, H., Mueller, S., Ionasescu, V., Schochet, S. S. and McCormick, W. F. (1972). Glycogenosis IV. A new cause of infantile hypotonia. J. Pediatr., 80, 842–844PubMedGoogle Scholar
  23. 23.
    Menkes, J. H. (1974). Textbook of Child Neurology. (New York: Lea and Febiger)Google Scholar
  24. 24.
    Layzer, R. B., Rowland, L. P. and Ranney, H. M. (1967). Muscle phosphofructokinase deficiency. Arch. Neurol., 17, 512–523PubMedGoogle Scholar
  25. 25.
    Prockop, L. D. (1976). Hyperglycaemia: effects on the nervous system. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 27, pp. 79–98. (Amsterdam: North Holland)Google Scholar
  26. 26.
    Partridge, W. M. and Oldendorf, W. H. (1977). Transport of metabolic substrates through the blood-brain barrier. J. Neurochem., 28, 5–12Google Scholar
  27. 27.
    Dyck, P. J., Sherman, W. R., Hallcher, L. M., Service, F. J., O’Brien, P. C., Grina, L. A., Palumbo, P. J. and Swanson, C. J. (1980). Human diabetic endonurial sorbitol, fructose, and myoinositol related to sural nerve morphometry. Ann. Neurol., 8, 590–596PubMedGoogle Scholar
  28. 28.
    Natarajan, V., Dyck, P. J. and Schmid, H. H. O. (1981). Alterations of inositol lipid metabolism of rat sciatic nerve in streptozotocin-induced diabetes. J. Neurochem., 36, 413–419PubMedGoogle Scholar
  29. 29.
    Satran, R. and Griggs, R. C. (1979). Metabolic encephalopathy. In Tyler, H. R. and Dawson, D. M. (eds.) Current Neurology. Vol. 2, pp. 474–505. (Boston: Houghton Mifflin)Google Scholar
  30. 30.
    Wilkinson, D. S. and Prockop, L. D. (1976). Hypoglycaemia: effects on the central nervous system. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 27, pp. 53–78. (Amsterdam: North Holland)Google Scholar
  31. 31.
    Lewis, L. D., Ljunggre, B., Ratcheson, R. A. and Siesjö, B. K. (1974). Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J. Neurochem., 23, 673–679PubMedGoogle Scholar
  32. 32.
    Agardh, C.-D., Chapman, A. G., Nilsson, B. and Siesjö, B. K. (1981). Endogenous substances utilized by rat brain in severe insulin-induced hypoglycemia. J. Neurochem., 36, 490–500PubMedGoogle Scholar
  33. 33.
    Hernandez, M. J., Vannucci, R. C., Salcedo, A. and Brennan, R. W. (1980). Cerebral blood flow and metabolism during hypoglycemia in newborn dogs. J. Neurochem., 35, 622–628PubMedGoogle Scholar
  34. 34.
    Norberg, K. and Siesjö, B. K. (1976). Oxidative metabolism of the cerebral cortex of the rat in severe insulin-induced hypoglycaemia J. Neurochem., 26, 345–352.PubMedGoogle Scholar
  35. 35.
    Gorell, J. M., Dockart, P. H. and Ferrendelli, J. A. (1976). Regional levels of glucose, amino acids, high energy phosphates, and cyclic nucleotides in the central nervous system during hypoglycemic stupor and behavioural recovery. J. Neurochem., 27, 1043–1049PubMedGoogle Scholar
  36. 36.
    Gorell, J. M., Law, M. M., Lowry, O. H. and Ferrendelli, J. A. (1977). Levels of cerebral cortical glycolytic and citric acid cycle metabolites during hypoglycemic stupor and its reversal. J. Neurochem., 29, 187–191PubMedGoogle Scholar
  37. 37.
    Dirks, B., Hanke, J., Krieglstein, J., Stock, R. and Wickop, G. (1980). Studies on the linkage of energy metabolism and neuronal activity in the isolated perfused rat brain. J. Neurochem., 35, 311–317PubMedGoogle Scholar
  38. 38.
    Gibson, G. E. and Blass, J. P. (1976). Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J. Neurochem., 27, 37–42PubMedGoogle Scholar
  39. 39.
    Agardh, C.-D., Folbergrova, J. and Siesjö, B. K. (1978). Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J. Neurochem., 31. 1135–1142PubMedGoogle Scholar
  40. 40.
    Brierley, J. B. (1976). Cerebral hypoxia. In Blackwood, W. and Corsellis, J. A. N. (eds.) Greenfield’s Neuropathology. 3rd Edn., pp. 43–85. (London: Arnold)Google Scholar
  41. 41.
    Coffey, G. L., O’Sullivan, D. J. and Burke, W. J. (1979). Hypoglycaemia secondary to pancreatic islet cell adenoma. Clin. Exp. Neurol., 16, 149–165PubMedGoogle Scholar
  42. 42.
    Froesch, E. R. (1978). Essential fructosuria, hereditary fructose intolerance, and fructose-1,6-diphosphatase deficiency. In Stanbury, J. B., Wyngaarden, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 121–136. (New York: McGraw-Hill)Google Scholar
  43. 43.
    Kaz, N. C., Pearson, C. M. and Verity, M. A. (1980). Muscle fructose-1,6-diphosphatase deficiency associated with an atypical central core disease. J. Neurol. Sci., 48, 243–256Google Scholar
  44. 44.
    Gitzelmann, R. and Baerlocher, K. (1977). Hereditary disorders of fructose and galactose metabolism. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 255–262. (Amsterdam: North Holland Publishing)Google Scholar
  45. 45.
    Segal, S. (1978). Disorders of galactose metabolism. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 160–181. (New York: McGraw-Hill)Google Scholar
  46. 46.
    Yandrasitz, J., Hwang, S. M., Cohn, R. and Segal, S. (1979). On the involvement of serotonin in galactose brain toxicity. J. Neurochem., 33, 1321–1323PubMedGoogle Scholar
  47. 47.
    Crome, L. (1962). A case of galactosemia with the pathological and neuropathological findings. Arch. Dis. Child., 37, 415–421PubMedGoogle Scholar
  48. 48.
    Habedand, C., Perou, M., Brunngraber, E. G. and Hof, H. (1971). The neuropathology of galactosemia. A histopathological and biochemical study. J. Neuropathol. Exp. Neurol., 30, 431–447Google Scholar
  49. 49.
    Guggenheim, M. A., McCabe, E. R. B., Roig, M., Goodman, S. I., Lum, G. M., Bullen, W. W. and Ringel, S. P. (1980). Glycerol kinase deficiency with neuromuscular, skeletal and adrenal abnormalities. Ann. Neurol., 7, 441–449PubMedGoogle Scholar
  50. 50.
    Stumpf, D. A. (1978). Friedreich’s ataxia and other hereditary ataxias. In Tyler, H. R. and Dawson, D. M. (eds.) Current Neurology. Vol. 1, pp. 86–111. (Boston: Houghton Mifflin)Google Scholar
  51. 51.
    Blass, J. P. (1979). Disorders of pyruvate metabolism. Neurology, 29, 280–286PubMedGoogle Scholar
  52. 52.
    Cowan, M. J., Wara, D. W., Packman, S., Ammann, A. J., Yoshino, M., Sweetman, L. and Nyhan, W. (1979). Multiple biotin-dependent carboxylase deficiencies associated with defects in T-cell and B-cell immunity. Lancet, 2, 115–118PubMedGoogle Scholar
  53. 53.
    Sander, J. E., Malamud, N., Cowan, M. J., Packman, S., Amman, A. J. and Wara, D. W. (1980). Intermittent ataxia and immunodeficiency with multiple carboxylase deficiencies: a biotin responsive disorder. Ann. Neurol., 8, 544–547PubMedGoogle Scholar
  54. 54.
    Kark, R. A. P. and Rodriguez-Budelli, M. (1979). Pyruvate dehydrogenase deficiency in spinocerebellar degenerations. Neurology, 29, 126–131PubMedGoogle Scholar
  55. 55.
    Kark, R. A. P., Rodriguez-Budelli, M. and Blass, J. P. (1978). Evidence for a primary defect of lipoamide dehydrogenase in Friedreich’s ataxia. In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology. Vol. 21, pp. 163–180. (New York: Raven Press)Google Scholar
  56. 56.
    Kark, R. A. P., Budelli, M. M. R., Becker, D. M., Weiner, L. P. and Forsythe, A. B. (1981). Lipoamide dehydrogenase: rapid heat inactivation in platelets of patients with recessively inherited ataxia. Neurology, 31, 199–202PubMedGoogle Scholar
  57. 57.
    Barbeau, A., Melancon, S., Butterworth, R. F., Filla, A., Izumi, K. and Ngo, T. T. (1978). Pyruvate dehydrogenase complex in Friedreich’s ataxia. In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology. Vol. 21, pp. 203–217. (New York: Raven Press)Google Scholar
  58. 58.
    Constantopoulos, G., Chang, C. S. C. and Barranger, J. A. (1980). Normal pyruvate dehydrogenase complex activity in patients with Friedreich’s ataxia. Ann. Neurol., 8, 636–639PubMedGoogle Scholar
  59. 59.
    Stumpf, D. A. and Parks, J. K. (1978). Friedreich’s ataxia. I. Normal pyruvate dehydrogenase complex activity in platelets. Ann. Neurol, 4, 366–368PubMedGoogle Scholar
  60. 60.
    Stumpf, D. A. and Parks, J. K. (1979). Friedreich’s ataxia. II. Normal kinetics of lipoamide dehydrogenase. Neurology, 29, 820–826PubMedGoogle Scholar
  61. 61.
    Plaitakis, A., Nicklas, W. J. and Desnick, R. J. (1980). Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann. Neurol, 7, 297–303PubMedGoogle Scholar
  62. 62.
    Livingstone, I. R., Mastaglia, F. L. and Pennington, R. J. T. (1980). An investigation of pyruvate metabolism in patients with cerebellar and spinocerebellar degeneration. J. Neurol. Sci., 48, 123–132PubMedGoogle Scholar
  63. 63.
    Williams, L. L. (1979). Pyruvate oxidation in Charcot-Marie-Tooth disease. Neurology, 29, 1492–1498PubMedGoogle Scholar
  64. 64.
    Blass, J. P., Kark, R. A. P. and Engel, W. K. (1971). Clinical studies of a patient with pyruvate-decarboxylase deficiency. Arch. Neurol, 25, 449–461PubMedGoogle Scholar
  65. 65.
    Kark, R. A. P., Blass, J. P. and Spence, A. (1975). Physostigmine in patients with familial ataxias. Neurology, 27, 70–72Google Scholar
  66. 66.
    Lawrence, C. M., Millac, P., Stout, G. S. and Ward, J. W. (1980). The use of choline chloride in ataxic disorders. J. Neurol. Neurosurg. Psychiatry, 43, 452–454PubMedGoogle Scholar
  67. 67.
    Livingstone, I. R., Mastaglia, F. L., Pennington, R. J. T. and Skilbeck, C. (1981). Choline chloride in the treatment of cerebellar and spinocerebellar ataxia. J. Neurol. Sci., 50, 161–174PubMedGoogle Scholar
  68. 68.
    Chamberlain, S., Robinson, N., Walker, J., Smith, C., Benton, S., Kennard, C., Swash, M., Kilkenny, B. and Bradbury, S. (1980). Effect of lecithin on disability and plasma free-choline levels in Friedreich’s ataxia. J. Neurol Neurosurg. Psychiatry, 43, 843–845PubMedGoogle Scholar
  69. 69.
    Di Donato, S., Rimoldi, M., Moise, A., Bertagnolio, B. and Uziel, G. (1979). Fatal ataxic encephalopathy and carnitine acetyltransferase deficiency: a functional defect of pyruvate oxidation. Neurology, 29, 1578–1583Google Scholar
  70. 70.
    Hamel, E., Butterworth, R. F. and Barbeau, A. (1979). Effect of thiamine deficiency on levels of putative amino acid transmitters in affected regions of rat brain. J. Neurochem., 33, 575–577PubMedGoogle Scholar
  71. 71.
    Gubler, C. J., Adams, B. L., Hammond, B., Yuan, E. C., Guo, S. M. and Bennion, M. (1974). Effect of thiamine deprivation and thiamine antagonists on the level of γ-aminobutyrate acid and on 2-oxoglutarate metabolism in rat brain. J. Neurochem., 22, 831–836PubMedGoogle Scholar
  72. 72.
    McEntee, W. J. and Mair, R. G. (1980). Memory enhancement in Korsakoff’s psychosis by Clonidine: further evidence for a noradrenergic deficit. Ann. Neurol., 7, 466–470PubMedGoogle Scholar
  73. 73.
    Plaitakis, A., Van Woert, M. H., Hwang, E. C. and Bed, S. (1978). The effect of acute thiamine deficiency on brain tryptophan, serotonin and 5-hydroxyindoleacetic acid. J. Neurochem., 31, 1087–1089PubMedGoogle Scholar
  74. 74.
    Loken, A. C. (1971). Vitamin deficiencies. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 2, pp. 1568–1575. (New York: McGraw-Hill)Google Scholar
  75. 75.
    Smith, W. T. (1976). Nutritional deficiencies and disorders. In Blackwood, W. and Corsellis, J. A. N. (eds.) Greenfield’s Neuropathology. 3rd Edn., pp. 194–237. (London: Arnold)Google Scholar
  76. 76.
    David, R. B., Mamunes, P. and Rosenblum, W. I. (1976). Necrotizing encephalopathy (Leigh). In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 28, pp. 349–363. (Amsterdam: North Holland)Google Scholar
  77. 77.
    De Vivo, D. C., Hammond, M. W., Obert, K. A., Nelson, J. S. and Pagliara, A. S. (1979). Defective activation of the pyruvate dehydrogenase complex in subacute necrotizing encephalomyelopathy (Leigh disease). Ann. Neurol., 6, 483–494Google Scholar
  78. 78.
    Pincus, J. H., Solitaire, G. B. and Cooper, J. R. (1976). Thiamine triphosphate levels and histopathology. Correlation in Leigh disease. Arch. Neurol., 33, 759–763PubMedGoogle Scholar
  79. 79.
    Pincus, J. H., Cooper, H. R., Piros, K. and Turner, V. (1974). Specificity of the urine inhibitor test for Leigh’s disease. Neurology, 24, 885–890PubMedGoogle Scholar
  80. 80.
    Murphy, J. V., Craig, L. J. and Glew, R. H. (1974). Leigh disease. Biochemical characteristics of the inhibitor. Arch. Neurol, 31, 220–227Google Scholar
  81. 81.
    Kalimo, H., Lundberg, P. O. and Olsson, Y. (1979). Familial subacute necrotizing encephalomyelopathy of the adult form (adult Leigh syndrome). Ann. Neurol, 6, 200–206PubMedGoogle Scholar
  82. 82.
    Dayan, A. D., Oegenden, B. G. and Crome, L. (1970). Necrotizing encephalomyelopathy of Leigh. Neuropathological findings in 8 cases. Arch. Dis. Child., 45, 39–48PubMedGoogle Scholar
  83. 83.
    Plaitakis, A., Whetsell, W. O. Jr., Cooper, J. R. and Yahr, M. D. (1980). Chronic Leigh disease: a genetic and biochemical study. Ann. Neurol, 7, 304–310PubMedGoogle Scholar
  84. 84.
    Feigin, I. and Budzilovich, G. N. (1977). Further observations on subacute necrotizing encephalomyelopathy in adults. J. Neuropathol. Exp. Neurol, 36, 128–139PubMedGoogle Scholar
  85. 85.
    Di Mauro, S., Mendell, J. R., Sahenk, Z., Bachman, D., Scarpa, A., Schofield, R. M. and Reiner, C. (1980). Fatal infantile mitochondrial myopathy and renal dysfunction due to cytochrome-c-oxidase myopathy. Neurology, 30, 795–804Google Scholar
  86. 86.
    Land, J. M., Morgan-Hughes, J. A. and Clark, J. B. (1981). Mitochondrial myopathy. Biochemical studies revealing a deficiency of NADH-cytochrome b reductase activity. J. Neurol. Sci., 50, 1–13PubMedGoogle Scholar
  87. 87.
    Bachelard, H. S., Lewis, L. D., Pontén, U. and Siesjö, B. K. (1974). Mechanisms activating glycolysis in the brain in arterial hypoxia. J. Neurochem., 22, 395–401PubMedGoogle Scholar
  88. 88.
    Gibson, G. E., Shimada, M. and Blass, J. P. (1978). Alterations in acetylcholine synthesis and cyclic nucleotides in mild cerebral hypoxia. J. Neurochem., 31, 757–760PubMedGoogle Scholar
  89. 89.
    Hicks, S. P. (1968). Vascular pathophysiology and acute and chronic oxygen deprivation. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 1, pp. 341–350. (New York: McGraw-Hill)Google Scholar
  90. 90.
    Lindenberg, R. (1971). Systemic oxygen deficiencies. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 2, pp. 1583–1617. (New York: McGraw-Hill)Google Scholar
  91. 91.
    Yatsu, F. M. (1976). Biochemical mechanisms of ischemic brain infarction. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 27, pp. 27–37. (Amsterdam: North Holland)Google Scholar
  92. 92.
    Welsh, F. A., Durity, F. and Langfitt, T. W. (1977). The appearance of regional variations in metabolism at a critical level of diffuse cerebral oligemia. J. Neurochem., 28, 71–79PubMedGoogle Scholar
  93. 93.
    Kobayashi, M., Lust, W. D. and Passonneau, J. V. (1977). Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex. J. Neurochem., 29, 53–59PubMedGoogle Scholar
  94. 94.
    Levy, D. E. and Duffy, T. E. (1977). Cerebral energy metabolism during transient ischemia and recovery in the gerbil. J. Neurochem., 28, 63–70PubMedGoogle Scholar
  95. 95.
    Saifer, A. (1971). Rapid screening methods for the detection of inherited and acquired aminoacidopathies. In Bodansky, O. and Latner, A. L. (eds.) Advances in Clinical Chemistry. Vol. 14, pp. 145–218. (New York: Academic Press)Google Scholar
  96. 96.
    Menkes, J. H. (1971). Disturbances of amino acid metabolism. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 2, pp. 1273–1280. (New York: McGraw-Hill)Google Scholar
  97. 97.
    Martin, J. J. and Scholte, W. (1972). Central nervous system lesions in disorders of amino acid metabolism: a neuropathological study. J. Neurol. Sci., 15, 49–76PubMedGoogle Scholar
  98. 98.
    Menkes, J. H. and Koch, R. (1977). Phenylketonuria. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp, 29–51. (Amsterdam: North Holland)Google Scholar
  99. 99.
    Tourian, A. Y. and Sidbury, J. B. (1978). Phenylketonuria. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 240–255. (New York: McGraw-Hill)Google Scholar
  100. 100.
    Scriver, C. R. and Clow, C. L. (1980). Phenylketonuria: epitome of human biochemical genetics. N. Engl. J. Med., 303, 1336–1342; 1394–1400PubMedGoogle Scholar
  101. 101.
    Danks, D. M., Cotton, R. G. H. and Schlesinger, P. (1976). Variant forms of phenylketonuria. Lancet, 1, 1236–1237PubMedGoogle Scholar
  102. 102.
    Butler, I. J., Koslow, S. H., Grumholz, A., Holtzman, N. A. and Kaufman, S. (1978). A disorder of biogenic amines in dihydropteridine reductase deficiency. Ann. Neurol., 3, 224–230PubMedGoogle Scholar
  103. 103.
    Nixon, J. C., Lee, C.-L., Mustien, S., Kaufman, S. and Bartholomé, K. (1980). Neopterin and biopterin levels in patients with atypical forms of phenylketonuria. J. Neurochem., 35, 898–904PubMedGoogle Scholar
  104. 104.
    Niederwieser, A., Curtius, H.-Ch., Bettoni, O., Bieri, J., Schircks, B., Visconti, M. and Schaub, J. (1979). Atypical phenylketonuria caused by 7,8-dihydrobiopterin synthetase deficiency. Lancet, 1, 131–133PubMedGoogle Scholar
  105. 105.
    Antonas, K. N. and Coulson, W. F. (1975). Brain uptake and protein incorporation of amino acids studied in rats subjected to prolonged hyperphenylalaninaemia. J. Neurochem., 24, 309–314Google Scholar
  106. 106.
    Benjamin, A. M., Verjee, Z. H. and Quastel, J. H. (1980). Effects of branched-chain L-amino acids, L-phenylalanine, and L-methionine on the transport of L-glutamine in rat brain cortex in vitro. Influence of cations. J. Neurochem., 35, 78–87PubMedGoogle Scholar
  107. 107.
    Land, J. M., Mowbray, J. and Clark, J. B. (1976). Control of pyruvate and β-hydroxybutyrate utilization in rat brain mitochondria and its revelance to phenylketonuria and maple syrup urine disease. J. Neurochem., 26, 823–830PubMedGoogle Scholar
  108. 108.
    Malamud, N. (1966). Neuropathology of phenylketonuria. J. Neuropathol. Exp. Neurol., 25, 254–268PubMedGoogle Scholar
  109. 109.
    Jervis, G. A. (1971). Phenylketonuria. In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 2, pp. 1280–1284. (New York: McGraw-Hill)Google Scholar
  110. 110.
    La Du, B. N. and Gjessing, L. R. (1978). Tyrosinosis and tyrosinemia. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 256–267. (New York: McGraw-Hill)Google Scholar
  111. 111.
    Seakins, J. W. T. (1977). Hartnup disease. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 149–170. (Amsterdam: North Holland)Google Scholar
  112. 112.
    Jepson, J. B. (1978). Hartnup disease. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 1563–1577. (New York: McGraw-Hill)Google Scholar
  113. 113.
    Wicklen, B., Yu, T. S. and Brown, D. R. (1977). Natural history of Hartnup disease. Arch. Dis. Child., 52, 38–40Google Scholar
  114. 114.
    Dancis, J. and Levitz, M. (1978). Abnormalities of branched chain amino acid metabolism. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 397–410. (New York: McGraw-Hill)Google Scholar
  115. 115.
    Moser, H. W. (1977). Maple syrup urine disease (branched chain ketonuria). In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 53–55. (Amsterdam: North Holland)Google Scholar
  116. 116.
    Patel, T. B., Booth, R. F. G. and Clark, J. B. (1977). Inhibition of acetoacetate oxidation by brain mitochondria from the suckling rat by phenylpyruvate and α-ketoisocaproate. J. Neurochem., 29, 1151–1153PubMedGoogle Scholar
  117. 117.
    Bissell, M. G., Bensch, K. G. and Herman, M. M. (1974). Effects of maple syrup urine disease metabolites on mouse L-fibroblasts in vitro: a fine structural and biochemical study. J. Neurochem., 22, 957–964PubMedGoogle Scholar
  118. 118.
    Lysiak, W., Pienkowska-Vogel, M., Szutowicz, A. and Angielski, S. (1974). Inhibition of alanine and aspartate aminotransferases by α-oxoderivatives of the branched-chain amino acids. J. Neurochem., 22, 75–83Google Scholar
  119. 119.
    Robinson, B. H., Oei, J., Sherwood, W. G., Slyper, A. H., Heininger, J. and Marner, D. A. (1980). Hydroxymethylglutaryl CoA lyase deficiency: features resembling Reye syndrome. Neurology, 30, 714–718PubMedGoogle Scholar
  120. 120.
    Shih, V. E. (1977). Miscellaneous metabolic disorders involving aminoacids and organic acids. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 195–243. (Amsterdam: North Holland)Google Scholar
  121. 121.
    Nyhan, W. L. (1978). Nonketotic hyperglycinemia. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 518–527. (New York: McGraw-Hill)Google Scholar
  122. 122.
    Dennis, M. J. and Clarke, J. T. R. (1979). Effects of glycine and glyoxylate on cerebral glucose oxidation in vitro. J. Neurochem., 33, 383–385Google Scholar
  123. 123.
    Shuman, R. M., Leech, R. W. and Scott, C. R. (1978). The neuropathology of the nonketotic and ketotic hyperglycinemias: three cases. Neurology, 28, 139–146PubMedGoogle Scholar
  124. 124.
    Bank, W. J., Pizer, L. and Pfender, W. (1978). Glycine metabolism and spinal cord disorder. In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology. Vol. 21, pp. 267–278. (New York: Raven Press)Google Scholar
  125. 125.
    Gitzelmann, R., Steinmann, B., Otten, A., Dumermuth, G., Herdon, M., Reubi, J. C. and Geunod, M. (1978). Nonketotic hyperglycinemia treated with strychnine, a glycine receptor antagonist. Helv. Paediatr., 32, 517–525Google Scholar
  126. 126.
    Rosenberg, L. E. (1978). Disorders of propionate, methylmalonate, and cobalamin metabolism. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 411–429. (New York: McGraw-Hill)Google Scholar
  127. 127.
    Kuhara, T. and Matsumoto, I. (1980). Studies on the urinary acidic metabolites from three patients with methylmalonic aciduria. Biomed. Mass Spectr., 7, 424–428Google Scholar
  128. 128.
    Hommes, F. A., Kuipers, J. R., Elema, J. D., Jansen, J. F. and Jonxis, J. J. P. (1968), Proprionic-acidemia, a new inborn error of metabolism. Paediatr. Res., 2, 519–524Google Scholar
  129. 129.
    Barnes, N. D., Hull, D., Baigobin, L. and Gompertz, D. (1970). Biotin-responsive pro-pionicacidaemia. Lancet, 2, 244–245PubMedGoogle Scholar
  130. 130.
    Buniatian, H. C. (1971). The urea cycle. In Lajtha, A. (ed.) Handbook of Neurochemistry. Vol. 5(A), pp. 235–247. (New York: Plenum Press)Google Scholar
  131. 131.
    Sadasivudu, B. and Hanumantharao, T. I. (1974). Studies on the distribution of urea cycle enzymes in different regions of rat brain. J. Neurochem., 23, 267–269PubMedGoogle Scholar
  132. 132.
    Glick, N. R., Snodgrass, P. J. and Schäfer, I. A. (1976). Neonatal arginino-succinic aciduria with normal brain and kidney but absent liver arginino-succinate lyase activity. Am. J. Hum. Genet., 28, 22–30PubMedCentralPubMedGoogle Scholar
  133. 133.
    Sadasnudu, B. and Rao, T. I. (1976). Studies on functional and metabolic role of urea cycle intermediates in brain. J. Neurochem., 27, 785–794Google Scholar
  134. 134.
    Carlton, D. (1977). Disorders of the urea cycle and related diseases. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 87–110. (Amsterdam: North Holland)Google Scholar
  135. 135.
    Shih, V. E. (1978). Urea cycle disorders and other congenital hyperammonemic syndromes. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 362–386. (New York: McGraw-Hill)Google Scholar
  136. 136.
    Levin, B. (1971). Hereditary metabolic disorders of the urea cycle. In Bodansky, O. and Latner, A. L. (eds.) Advances in Clinical Chemistry. Vol. 14, pp. 65–143. (New York: Academic Press)Google Scholar
  137. 137.
    Ebels, E. J. (1972). Neuropathological observations in a patient with carbamylphosphate-synthetase deficiency and in two sibs. Arch. Dis. Child., 47, 47–51PubMedGoogle Scholar
  138. 138.
    Simmell, O., Perheentupa, J., Rapola, J., Visakorpi, J. K. and Eskelin, L.-E. (1975). Lysinuric protein intolerance. Am. J. Med., 59, 229–240Google Scholar
  139. 139.
    Columbo, J. P., Richterich, R., Donath, A., Spahr, A. and Rossi, E. (1964). Congenital lysine intolerance with periodic ammonia intoxication. Lancet, 1, 1014–1015Google Scholar
  140. 140.
    Ghadimi, H., Binnington, V. I. and Pecora, P. (1965). Hyperlysinemia associated with retardation. N. Engl. J. Med., 273, 725–729Google Scholar
  141. 141.
    Dancis, J., Hutzler, J., Cox, R. P. and Woody, N. C. (1969). Familial hyperlysinemia with lysine-ketoglutarate reductase insufficiency. J. Clin. Invest., 48, 1447–1452PubMedCentralPubMedGoogle Scholar
  142. 142.
    Simell, O., Visakorpi, J. K. and Donner, M. (1972). Saccharopinuria. Arch. Dis. Child., 47, 52–55PubMedGoogle Scholar
  143. 143.
    Gatfield, P. D., Taller, E., Hinton, G. G., Wallace, A. C., Abdelnour, G. M. and Haust, M. D. (1968). Hyperpipecolatemia, a new metabolic disorder associated with neuropathy and hepatomegaly. A case study. Can. Med. Assoc. J., 99, 1215–1233PubMedCentralPubMedGoogle Scholar
  144. 144.
    Stumpf, D. A. and Parks, J. K. (1980). Urea cycle regulation. I. Coupling of ornithine metabolism to mitochondrial oxidative phosphorylation. Neurology, 30, 178–184PubMedGoogle Scholar
  145. 145.
    Gaull, G. E. (1972). Abnormal metabolism of sulfur-containing amino acids associated with brain dysfunction. In Lathja, A. (ed.) Handbook of Neurochemistry. Vol. 7, pp. 169–190. (New York: Plenum Press)Google Scholar
  146. 146.
    Gaull, G. E., Bender, A. N., Vulovic, D., Tallan, H. H. and Schaffner, F. (1981). Methioninemia and myopathy: a new disorder. Ann. Neurol., 9, 423–432PubMedGoogle Scholar
  147. 147.
    Milstein, J. M. (1977). Metabolic derangements of sulfur-containing amino acids. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 111–125. (Amsterdam: North Holland)Google Scholar
  148. 148.
    Mudd, S. H. and Levy, H. L. (1978). Disorders of transsulfuration. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 458–503. (New York: McGraw-Hill)Google Scholar
  149. 149.
    Gibson, J. B., Carson, N. A. and Neill, D. W. (1964). Pathological findings in homocystinuria. J. Clin. Pathol., 17, 427–437PubMedGoogle Scholar
  150. 150.
    Shih, V. E., Abroms, I. F., Johnson, J. L., Carney, M., Mandell, R., Robb, R. M., Cloherty, J. P. and Rajagopalan, K. V. (1977). Sulfite oxidase deficiency: biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. N. Engl. J. Med., 297, 1022–1028PubMedGoogle Scholar
  151. 151.
    Rosenblum, W. I. (1968). Neuropathologic changes in a case of sulfite oxidase deficiency. Neurology, 18, 1187–1196PubMedGoogle Scholar
  152. 152.
    Kivirikko, K. I. and Simila, S. (1977). Aminoacidurias. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 129–148. (Amsterdam: North Holland)Google Scholar
  153. 153.
    Scriver, C. R. (1978). Disorders of proline and hydroxyproline metabolism. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 336–361. (New York: McGraw-Hill)Google Scholar
  154. 154.
    Prusiner, S. B. (1981). Disorders of glutamate metabolism and neurological dysfunction. Ann. Rev. Med., 32, 521–542PubMedGoogle Scholar
  155. 155.
    Meister, A. (1978). Relation between ataxia and defects of the γ-glutamyl cycle. In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology. Vol. 21, pp. 289–302. (New York: Raven Press)Google Scholar
  156. 156.
    La Du, B. N., Howell, R. R., Jacoby, G. A., Seegmiller, J. E., Sober, E. K. and Zannoni, V. G. (1963). Clinical and biochemical studies on two cases of histidinemia. Pediatrics, 32, 216–227Google Scholar
  157. 157.
    Neville, B. G., Bentovim, A., Clayton, B. and Shepherd, J. (1972). Histidinaemia. Study of relation between clinical and biological findings in 7 subjects. Arch. Dis. Child., 47, 190–200PubMedGoogle Scholar
  158. 158.
    Scriver, C. R., Nutzenadel, W. and Perry, T. L. (1978). Disorders of β-alanine and carnosine metabolism. In Stanbury, J. T., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 528–542. (New York: McGraw-Hill)Google Scholar
  159. 159.
    Terplan, K. L. and Cares, H. L. (1972). Histopathology of the nervous system in carnosinase enzyme deficiency with mental retardation. Neurology, 22, 644–655PubMedGoogle Scholar
  160. 160.
    Sjaastad, O., Berstad, J., Gjesdahl, P. and Gjessing, L. (1976). Homocarnosinosis 2. A familial metabolic disorder associated with spastic paraplegia, mental deficiency and retinal pigmentation. Acta Neurol. Scand., 53, 275–290PubMedGoogle Scholar
  161. 161.
    Perry, T. L., Kish, S. J., Sjaastad, O., Gjessing, L. R., Nesbakken, R., Schrader, H. and L0ken, A. C. (1979). Homocarnosinosis: increased content of homocarnosine and deficiency of homo-carnosinase in brain. J. Neurochem., 32, 1637–1640PubMedGoogle Scholar
  162. 162.
    Leibel, R. L., Shih, V. E., Goodman, S. I., Bauman, M. L., McCabe, E. R. B., Zwerdling, R. G, Bergman, I. and Costello, C. (1980). Glutaric acidemia: a metabolic disorder causing progressive choreoathetosis. Neurology, 30, 1163–1168PubMedGoogle Scholar
  163. 163.
    Wyngaarten, J. B., (1979). The Lesch-Nyhan syndrome (HGPRT deficiency). In Beeson, P. B., McDermott, W. and Wyngaarten, J. B. (eds.) Cecil Textbook of Medicine. 15th Edn., pp. 2042–2043. (Philadelphia: Saunders)Google Scholar
  164. 164.
    Nyhan, W. L. (1977). The Lesch-Nyhan syndrome. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 263–278. (Amsterdam: North Holland)Google Scholar
  165. 165.
    Kelley, W. N. and Wyngaarten, J. B. (1978). The Lesch-Nyhan syndrome. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 1011–1036. (New York: McGraw-Hill)Google Scholar
  166. 166.
    Allsop, J. and Watts, R. W. E. (1980). Activities of amidophosphoribosyltransferase (EC 2.4.2.14) and the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8), and the phos-phoribosylpyrophosphate content of rat central nervous system at different stages of development. J. Neurol. Sci., 46, 221–232PubMedGoogle Scholar
  167. 167.
    Rockson, S., Stone, R., Van Der Weyden, M. and Kelley, W. N. (1974). Lesch-Nyhan syndrome. Evidence for abnormal adrenergic function. Science, 186, 934–935PubMedGoogle Scholar
  168. 168.
    Nyhan, W. L. (1978). Ataxia and disorders of purine metabolism: defects in hypoxanthine guanine phosphoribosyl transferase and clinical ataxia. In Kark, R. A. P., Rosenberg, R. N. and Schut, L. J. (eds.) Advances in Neurology. Vol. 21, pp. 279–287. (New York: Raven Press)Google Scholar
  169. 169.
    Meyer, U. A. and Schmid, R. (1978). The phorphyrias. In Stanbury, J. B., Wyngaarten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 1166–1220. (New York: McGraw-Hill)Google Scholar
  170. 170.
    Bornstein, J. C., Pickett, J. B. and Diamond, I. (1978). Inhibition of the evoked release of acetylcholine by the porphyrin precursor δ-aminolevulinic acid. Ann. Neurol., 5, 94–96Google Scholar
  171. 171.
    Brennan, M. J. W. and Cantrill, R. C. (1979). The effect of delta-aminolaevulinic acid on the uptake and efflux of amino acid neurotransmitters in rat brain synaptosomes. J. Neurochem., 33, 721–725PubMedGoogle Scholar
  172. 172.
    Larson, A. W., Wasserstrom, W. R., Felsher, B. F. and Shih, J. C. (1978). Posttraumatic epilepsy and acute intermittent porphyria: effects of phenytoin, carbamazepine and clonazepam. Neurology, 28, 824–828PubMedGoogle Scholar
  173. 173.
    Bosch, E. P., Pierach, C. A., Bossenmaier, I., Cardinal, R. and Thorson, M. (1977). Effect of hematin in porphyria neuropathy. Neurology, 27, 1053–1056PubMedGoogle Scholar
  174. 174.
    McColl, K. E. L., Moore, M. R., Thompson, G. G. and Goldberg, A. (1981). Treatment with haematin in acute hepatic porphyria. Quart. J. Med., 198, 161–174Google Scholar
  175. 175.
    Weiner, W. J. and Klawans, H. L. (1976). Vitamin B6. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 28, pp. 105–139. (Amsterdam: North Holland)Google Scholar
  176. 176.
    Weiner, W. J. (1976). Vitamin B6 in the pathogenesis and treatment of diseases of the central nervous system. In Klawans, H. L. (ed.) Clinical Neuropharmacology. Vol. 1, pp. 107–136. (New York: Raven Press)Google Scholar
  177. 177.
    Lott, I. T., Coulombe, T., Di Paolo, R. V., Richardson, E. P. Jr and Levy, H. L. (1978). Vitamin B6 dependent seizures: pathology and chemical findings in brain. Neurology, 28, 47–54PubMedGoogle Scholar
  178. 178.
    Botez, M. I. and Reynolds, E. H. (eds.) (1979). Folic Acid in Neurology, Psychiatry and Internal Medicine. (New York: Raven Press)Google Scholar
  179. 179.
    Kunze, K. and Leitenmaier, K. (1976). Vitamin B12 deficiency and subacute combined degeneration of the spinal cord. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 28, pp. 141–198. (Amsterdam: North Holland)Google Scholar
  180. 180.
    Fehling, C., Nilsson, B. and Jägerstad, M. (1979). Effect of vitamin B12 deficiency on energy-rich phosphates, glycolytic and citric acid cycle metabolites and associated amino acids in rat cerebral cortex. J. Neurochem., 32, 1115–1117PubMedGoogle Scholar
  181. 181.
    Mans, A. M., Saunders, S. J., Kirsch, R. E. and Biebuyck, J. F. (1979). Correlation of plasma and brain amino acid and putative neurotransmitter alterations during acute hepatic coma in the rat. J. Neurochem., 32, 285–292PubMedGoogle Scholar
  182. 182.
    Duffy, T. E., Vergara, F. and Plum, F. (1974). α-Ketoglutaramate in hepatic encephalopathy. Res. Publ. Assoc. Nerv. Ment. Dis., 53, 39–51Google Scholar
  183. 183.
    Cooper, A. J. L. and Gross, M. (1977). The glutamine transaminase-w-amidase system in rat and human brain. J. Neurochem., 28, 771–778PubMedGoogle Scholar
  184. 184.
    Ali, F. M., Ansley, J. and Faraj, B. A. (1980). Studies on the influence of portocaval shunt on the metabolism of tyrosine. J. Pharmacol. Exp. Ther., 214, 546–553PubMedGoogle Scholar
  185. 185.
    Curzon, G., Kantamaneni, B. D., Fernando, J. C., Woods, M. S. and Cavanagh, J. B. (1975). Effects of chronic porto-caval anastomosis on brain tryptophan, tyrosine and 5-hydroxy-tryptamine. J. Neurochem., 24, 1065–1070PubMedGoogle Scholar
  186. 186.
    Jellinger, K. and Riederer, P. (1977). Brain monoamines in metabolic (endotoxic) coma. A preliminary biochemical study in human postmortem material. J. Neural Trans., 41, 275–286Google Scholar
  187. 187.
    James, J. H., Hodgman, J. M., Funovics, J. M. and Fischer, J. E. (1976). Alterations in brain octopamine and brain tyrosine following portocaval anastomosis in rats. J. Neurochem., 27, 223–227PubMedGoogle Scholar
  188. 188.
    Fischer, J. E. (1974). False neurotransmitters and hepatic coma. Res. Publ. Assoc. Nerv. Ment. Dis., 53, 53–71Google Scholar
  189. 189.
    Fischer, J. E., Funovics, J. M., Falcao, H. A. and Wesdorp, I. C. (1976). L-Dopa in hepatic coma. Ann. Surg., 183, 386–391PubMedGoogle Scholar
  190. 190.
    Victor, M. (1974). Neurologic changes in liver disease. Res. Publ. Assoc. Nerv. Dis., 53, 1–12Google Scholar
  191. 191.
    Cavanagh, J. B. (1974). Liver bypass and the glia. Res Publ. Assoc. Nerv. Ment. Dis., 53, 13–35Google Scholar
  192. 192.
    Schmid, R. and McDonagh, A. F. (1978). Hyperbilirubinemia. In Stanbury, J. B., Wyngaar-ten, J. B. and Fredrickson, D. S. (eds.) The Metabolic Basis of Inherited Disease. 4th Edn., pp. 1221–1257. (New York: McGraw-Hill)Google Scholar
  193. 193.
    Osterberg, K. (1971). Kernicterus (bilirubin encephalopathy). In Minckler, J. (ed.) Pathology of the Nervous System. Vol. 2, pp. 1338–1342. (New York: McGraw-Hill)Google Scholar
  194. 194.
    Angelini, C., Philippart, M., Borrone, C., Bresolin, N., Cantini, M. and Lucke, S. (1980). Multisystem triglyceride storage disorder with impaired long-chain fatty acid oxidation. Ann. Neurol., 7, 5–10PubMedGoogle Scholar
  195. 195.
    Di Donato, S., Cornelio, F., Storchi, G. and Rimoldi, M. (1979). Hepatic ketogenesis and muscle carnitine deficiency. Neurology, 29, 780–785Google Scholar
  196. 196.
    Willner, J. H., Ginsburg, S. and Di Mauro, S. (1978). Active transport of carnitine into skeletal muscle. Neurology, 28, 721–724PubMedGoogle Scholar
  197. 197.
    Carroll, J. E., Brooke, M. H., De Vivo, D. C., Shumate, J. B., Kratz, R., Ringel, S. P. and Hagberg, J. M. (1980). Carnitine ‘deficiency’: lack of response to carnitine therapy. Neurology, 30, 618–626PubMedGoogle Scholar
  198. 198.
    Hart, Z. H., Chang, C.-H., Di Mauro, S., Farooki, Q. and Ayyar, R. (1978). Muscle carnitine deficiency and fatal cardiomyopathy. Neurology, 28, 147–151PubMedGoogle Scholar
  199. 199.
    Markesbury, W. R., McQuillen, M. P., Procopis, P. G., Harrison, A. R. and Engel, A. G. (1974). Muscle carnitine deficiency. Association with lipid myopathy, vacuolar neuropathy and vacuolated lymphocytes. Arch. Neurol., 31, 320–324Google Scholar
  200. 200.
    Chapoy, P. R., Angelini, C., Brown, W. J, Stiff, J. E, Shug, A. L. and Cederbaum, S. D. (1980). Systemic carnitine deficiency — a treatable inherited lipid-storage disease presenting as Reye’s syndrome. N. Engl. J. Med., 303, 1389–1394PubMedGoogle Scholar
  201. 201.
    Layzer, R. B., Havel, R. J. and Mcllroy, M. B. (1980). Partial deficiency of carnitine palmityl-transferase, physiologic and biochemical consequences. Neurology, 30, 627–633PubMedGoogle Scholar
  202. 202.
    lonasescu, V., Hug, G. and Hoppel, C. (1980). Combined partial deficiency of muscle carnitine palmitoyl transferase and carnitine with autosomal dominant inheritance. J. Neurol., Neurosurg. Psychiatry, 43, 679–682Google Scholar
  203. 203.
    Di Donato, S., Castiglione, A., Rimoldi, M., Cornelio, F., Vendemia, F., Cardace, G. and Bertagnolio, B. (1981). Heterogeneity of carnitine palmitoyltransferase deficiency. J. Neurol. Sci., 50, 207–215PubMedGoogle Scholar
  204. 204.
    Di Donato, S., Cornelio, F., Pacini, L., Peluchetti, D., Rimoldi, M. and Spreafico, S. (1978). Muscle carnitine palmityltransferase deficiency: a case with enzyme deficiency in cultured fibroblasts. Ann. Neurol., 4, 465–467Google Scholar
  205. 205.
    Stumpf, D. A. (1979). Mitochondrial multisystem disorders: clinical, biochemical and morphologic features. In Tyler, H. R. and Dawson, D. M. (eds.) Current Neurology. Vol. 2, pp. 117–149. (Boston: Houghton Mifflin)Google Scholar
  206. 206.
    Fitzsimmons, R. B. (1981). The mitochondrial myopathies: 9 case reports and a literature review. Clin. Exp. Neurol., 17, 185–210Google Scholar
  207. 207.
    Pellock, J. M., Behrens, M., Lewis, L., Holub, D., Carter, S. and Rowland, L. P. (1978). Kearns-Sayre syndrome and hypoparathyroidism. Ann. Neurol., 3, 455–458PubMedGoogle Scholar
  208. 208.
    Frank, J. P., Harrati, Y., Butler, I. J., Nelson, T. E. and Scott, C. I. (1980). Central core disease and malignant hyperthermia syndrome. Ann. Neurol., 7, 11–17PubMedGoogle Scholar
  209. 209.
    De Vivo, D. C. (1978). Reye syndrome: a metabolic response to an acute mitochondrial insult? Neurology, 28, 105–108PubMedGoogle Scholar
  210. 210.
    Haymond, M. W., Karl, I. E., Keating, J. P. and De Vivo, D. C. (1978). Metabolic response to hypertonic glucose administration in Reye syndrome. Ann. Neurol., 3, 207–215PubMedGoogle Scholar
  211. 211.
    Ansevin, C. F. (1980). Reye syndrome: serum-induced alterations in brain mitochondrial function are blocked by fatty-acid-free albumin. Neurology, 30, 160–166PubMedGoogle Scholar
  212. 212.
    Trauner, D. A., Brown, F., Ganz, E. and Huttenlocher, P. R. (1978). Treatment of elevated intracranial pressure in Reye syndrome. Ann. Neurol., 4, 275–278PubMedGoogle Scholar
  213. 213.
    Haas, R., Stumpf, D. A., Bergen, B. J., Parks, J. K. and Eguren, L. (1980). Inhibition of oxidative phosphorylation by sodium valproate. Neurology, 30, 420Google Scholar
  214. 214.
    Trauner, D. A. and Huttenlocher, P. R. (1978). Short chain fatty acid-induced central hyperventilation in rabbits. Neurology, 28, 940–944PubMedGoogle Scholar
  215. 215.
    Huttenlocher, P. R. and Trauner, D. A. (1977). Reye’s syndrome. In Vinken, P. J. and Bruyn, G. W. (eds.) Handbook of Clinical Neurology. Vol. 29, pp. 331–344. (Amsterdam: North Holland)Google Scholar
  216. 216.
    Vanholder, R., De Reuck, J., Sieben-Praet, M. and De Coster, W. (1979). Reye’s syndrome in an adult. Eur. Neurol., 18, 367–372PubMedGoogle Scholar
  217. 217.
    Trauner, D. A. (1980). Treatment of Reye syndrome. Ann. Neurol., 7, 2–4PubMedGoogle Scholar

Copyright information

© M. J. Eadie and J. H. Tyrer 1983

Authors and Affiliations

  • M. J. Eadie
    • 1
  • J. H. Tyrer
  1. 1.Department of MedicineUniversity of QueenslandBrisbaneAustralia

Personalised recommendations