Clues to Substellar Formation: Rotation and the Low-Mass End of the Initial Mass Function

  • María Rosa Zapatero Osorio
  • José Caballero
  • Eduardo L. Martín
  • Víctor J. S. Béjar
  • Rafael Rebolo


We have monitored S Ori 45, a young, low-mass (20 M jup) brown dwarf of the σ Orionis cluster (~3 Myr, 352 pc), using optical and near-infrared filters. S Ori 45 (spectral type M8.5) is found to be multi-periodic with a dominant modulation at 2.5–3.5 h, and a short modulation at about 46 min. We ascribe the longer of these modulations to a rotation period. After comparing these results with observations of more massive cluster brown dwarfs and field brown dwarfs, we conclude that substellar objects present rotational and angular momentum evolution.

We have also obtained intermediate-resolution near-infrared spectroscopy of S Ori 70, which is a T-class, free-floating planetary candidate member in the σ Orionis cluster. Its observed spectrum has been compared to data of field brown dwarfs of similar types and to theoretical spectra computed for different surface temperatures and gravities. We conclude that S Ori 70 has a significantly cool, low-gravity atmosphere. This supports the young age of this object and its membership in the cluster. From state-of-the-art evolutionary models, the mass of S Ori 70 is estimated at 3 times the Jovian mass ( −2 +5 M jup), challenging current stellar/substellar formation models. S Ori 70 remains the lowest mass object so far identified in any open cluster.


young star clusters brown dwarfs planetary-mass objects angular momentum evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard, F. et al.: 2001, ApJ 556, 357.ADSCrossRefGoogle Scholar
  2. Bailer-Jones, C.A.L. and Mundt, R.: 1999, AandA 348, 800.Google Scholar
  3. Bailer-Jones, C.A.L. and Mundt, R.: 2001, AandA 367, 218.Google Scholar
  4. Barrado y Navascués, D. et al.: 2003, AandA 404, 171.Google Scholar
  5. Béjar, V.J.S. et al.: 1999, ApJ 521, 671.ADSCrossRefGoogle Scholar
  6. Béjar, V.J.S. et al.: 2001, ApJ 556, 830.ADSCrossRefGoogle Scholar
  7. Burgasser, A. et al.: 2002, ApJ 564, 421.ADSCrossRefGoogle Scholar
  8. Burrows, A. et al.: 1997, ApJ 491, 856.ADSCrossRefGoogle Scholar
  9. Chabrier, G. et al.: 2000, ApJ 542, 464.ADSCrossRefGoogle Scholar
  10. Clarke, F.J., Oppenheimer, B. and Tinney, C.: 2002, MNRAS 332, 361.ADSCrossRefGoogle Scholar
  11. Deeg, H.J. et al.: 1998, AandA 338, 479.Google Scholar
  12. Herbst, W. et al.: 2000, Ai 119, 261.ADSGoogle Scholar
  13. Joergens, V. et al.: 2003, ApJ 594, 971.ADSCrossRefGoogle Scholar
  14. Lomb, N.R.: 1976, ApandSS 39, 447.Google Scholar
  15. Lucas, P. et al.: 2001, MNRAS 326, 695.ADSCrossRefGoogle Scholar
  16. Martin, E.L. and Zapatero Osorio, M.R.: 2003, ApJ 593, L113.ADSCrossRefGoogle Scholar
  17. Oliveira, J.M. et al.: 2002, AandA 382, L22.Google Scholar
  18. Partridge, P. and Schwenke.: 1997, J. Chem. Phys. 106, 4618.ADSCrossRefGoogle Scholar
  19. Saumon, D. et al.: 1996, ApJ 460, 993.ADSCrossRefGoogle Scholar
  20. Roberts, D.H., Lehâr, J. and Dreher, J.W.: 1987, AJ 93, 968.ADSCrossRefGoogle Scholar
  21. Saumon, D. et al.: 1996, ApJ 460, 993.ADSCrossRefGoogle Scholar
  22. Scargle, J.D.: 1982, ApJ 263, 835.ADSCrossRefGoogle Scholar
  23. Zapatero Osorio, M.R. et al.: 2000, Science 290, 103.ADSCrossRefGoogle Scholar
  24. Zapatero Osorio, M.R. et al.: 2002a, ApJ 578, 536.ADSCrossRefGoogle Scholar
  25. Zapatero Osorio, M.R. et al.: 2002b, AandA 384, 937.Google Scholar
  26. Zapatero Osorio, M.R. et al.: 2003, AandA 408, 663.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • María Rosa Zapatero Osorio
    • 1
  • José Caballero
    • 2
  • Eduardo L. Martín
    • 3
  • Víctor J. S. Béjar
    • 2
  • Rafael Rebolo
    • 2
  1. 1.LAEFF-INTAMadridSpain
  2. 2.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain
  3. 3.IfA, University of HawaiiHonoluluUSA

Personalised recommendations