Advertisement

Magnetic Star-Disk Interaction in Classical T Tauri Stars

  • M. Küker
  • Th. Henning
  • G. Rüdiger

Abstract

We carry out 2.5D MHD simulations to study the interaction between a dipolar magnetic field of a T Tauri Star, a circumstellar accretion disk, and the halo above the disk. The initial disk is the result of 1D radiation hydrodynamics computations with opacities appropriate for low temperatures. The gas is assumed resistive, and inside the disk accretion is driven by a Shakura—Sunyaev-type eddy viscosity. Magnetocentrifugal forces due to the rotational shear between the star and the Keplerian disk cause the magnetic field to be stretched outwards and part of the field lines are opened. For a solar-mass central star and an accretion rate of 10−8 solar masses per year a field strength of 100 G (measured on the surface of the star) launches a substantial outflow from the inner parts of the disk. For a field strength of 1 kG the inner parts of disk is disrupted. The truncation of the disk turns out to be temporary, but the magnetic field structure remains changed after the disk is rebuilt.

Keywords

ISM: jets and outflows Stars: magnetic fields Stars: circumstellar matter Stars: formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, D.R., Augason, G.C. and Johnson, H.R.: 1989, ApJ 345, 10149.CrossRefGoogle Scholar
  2. Bouvier, J., Cabrit, S., Fernandez, M., Martin, E.L. and Matthews, J.M.: 1993, AandA 272, 176.Google Scholar
  3. Camenzind, M.: 1990, Magnetized Disk-Winds and the Origin of Bipolar Outflows, in: G. Klare, (ed.), Reviews in Modern Astronomy 3, Springer-Verlag, Berlin.Google Scholar
  4. Cameron, A.C. and Campbell, C.G.: 1993, AandA 274, 30.Google Scholar
  5. Edwards, S., Strom, S.E., Hartigan, P. et al.: 1993, AT 106, 372.Google Scholar
  6. Ghosh, P. and Lamb, F.K.: 1979, ApJ 232, 259.ADSCrossRefGoogle Scholar
  7. Ghosh, P.: 1995, MNRAS 272, 763.ADSGoogle Scholar
  8. Goodson, A.P., Winglee, R.M. and Böhm, K.-H.: 1997, ApJ 489, 199.ADSCrossRefGoogle Scholar
  9. Klahr, H.H., Henning, Th. and Kley, W.: 1999, Api 514, 325.ADSGoogle Scholar
  10. Kley, W.: 1989, AandA 222, 141.Google Scholar
  11. Königl, A.: 1991, ApJ 370, L39.CrossRefGoogle Scholar
  12. Küker, M., Henning, Th. and Rüdiger, G.: 2003, Api 589, 397.ADSGoogle Scholar
  13. Lovelace, R.V.E., Romanova, M.M. and Bisnovatyi-Kogan, G.S.: 1995, MNRAS 275, 244.ADSGoogle Scholar
  14. Matt, S., Goodson, A.P., Winglee, R.M. and Böhm, K.-H.: 2002, ApJ 547.Google Scholar
  15. Miller, K.A. and Stone, J.M.: 1997, Api 489, 890.ADSGoogle Scholar
  16. Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S. and Lizano, S.: 1994, ApJ 429, 781.ADSCrossRefGoogle Scholar
  17. Stone, J.M. and Norman, M.L.: 1992, ApJ 80, 791.ADSGoogle Scholar
  18. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V. and Lovelace, R.V.E.: 2002, Api 578, 420.ADSGoogle Scholar
  19. Yi, I.: 1994, ApJ 428, 760.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • M. Küker
    • 1
  • Th. Henning
    • 2
  • G. Rüdiger
    • 1
  1. 1.Astrophysikalisches Institut PostdamPotsdamGermany
  2. 2.Max-Planck-Institut für AstronomieHeidelbergGermany

Personalised recommendations