Advertisement

Magnetic Flux Transport in the ISM through Turbulent Ambipolar Diffusion

  • Fabian Heitsch
  • Ellen G. Zweibel
  • Adrianne D. Slyz
  • Julien E. G. Devriendt

Abstract

Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium (ISM). However, observations indicate that this correlation is weaker than expected. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in other astrophysical problems to increase transport rates above the (very slow) diffusive values. Building on analytical studies, we test with numerical models whether turbulence can enhance the ambipolar diffusion rate sufficiently to explain the observed weak correlations. The numerical method is based on a gas-kinetic scheme with very low numerical diffusivity, thus allowing us to separate numerical and physical diffusion effects.

Keywords

ISM MHD ambipolar diffusion turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballesteros-Paredes, J., Vâzquez-Semadeni, E. and Scalo, J.: 1999, Api 515, 286. Bourke, T.L., Myers, P.C., Robinson, G. and Hyland, A.R.: 2001, ApJ 554, 916.Google Scholar
  2. Brandenburg, A. and Zweibel, E.G.: 1994, ApJL 427, 91.ADSCrossRefGoogle Scholar
  3. Crutcher, R.M.: 1999, ApJ 520, 706.ADSCrossRefGoogle Scholar
  4. Fatuzzo, M. and Adams, F.C.: 2002, ApJ 570, 210.ADSCrossRefGoogle Scholar
  5. Fiedler, R.A. and Mouschovias, T.Ch.: 1993, ApJ 415, 680.ADSCrossRefGoogle Scholar
  6. Galloway, D.J. and Proctor, M.R.E.: 1992, Nature 356, 691.ADSCrossRefGoogle Scholar
  7. Heiles, C.: 2003, Observations of Turbulence in the Diffuse ISM, Proceedings of the Workshop: Magnetic Fields and Star Formation: Theory Versus Observations,Kluwer.Google Scholar
  8. Heitsch, F. and Zweibel, E.G.: 2003, ApJ 583, 229.ADSCrossRefGoogle Scholar
  9. Heitsch, F., Zweibel, E.G., Slyz, A.D. and Devriendt, J.E.G.: 2003, in preparation.Google Scholar
  10. Kim, E.-J. and Diamond, P.H.: 2002, Api 578, 113.ADSGoogle Scholar
  11. Lazarian, A. and Vishniac, E.T.: 1999, ApJ 517, 700.ADSCrossRefGoogle Scholar
  12. Mac Low, M.-M. and Smith, M.D.: 1997, ApJ 491, 596.ADSCrossRefGoogle Scholar
  13. Mestel, L.: 1985, in: D.C. Black and M.S. (eds.), Protostars and Planes II, Matthews Tucson: Univ. Arizona Press, 320.Google Scholar
  14. Petschek, A.G.: 1969, in: W.N. Hess (ed.), AAS-NASA Symp. on the Physics of Solar Flares, NASA SP-50, Greenbelt: NASA, p. 425.Google Scholar
  15. Tang, H.Z. and Xu, K.: 2000, J. Comp. Phys. 165, 69.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. Troland, T.H. and Heiles, C.: 1986, ApJ 339, 345.Google Scholar
  17. Xu, K.: 1999, J. Comp. Phys. 153, 334.ADSCrossRefzbMATHGoogle Scholar
  18. Zweibel, E.G.: 2002, ApJ 567, 962.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Fabian Heitsch
    • 1
  • Ellen G. Zweibel
    • 1
  • Adrianne D. Slyz
    • 2
  • Julien E. G. Devriendt
    • 2
  1. 1.University of Wisconsin-MadisonUSA
  2. 2.University of OxfordUK

Personalised recommendations