Advertisement

Cretaceous Carbonate Platforms

  • Wolfgang Schlager
  • Jean Philip
Chapter
Part of the NATO ASI Series book series (ASIC, volume 304)

Abstract

Studies of carbonate platforms can contribute significantly to several of the themes announced by GSGP. We propose the following topics as a focus for Working Group 4.
  1. 1.

    Determine rates of sediment production, rates of aggradation and large-scale facies patterns of Cretaceous platforms and evaluate the differences between platforms of the Cretaceous greenhouse Earth and those of the present-day icehouse Earth.

     
  2. 2.

    Construct at least parts of a sea level curve solely from the record of carbonate platforms to avoid the problems of sequence boundaries caused by the change-over from siliciclastics to carbonates or evaporites and vice versa.

     
  3. 3.

    Examine the repeated global crises of platforms in the Cretaceous, in particular the puzzling coincidence of world-wide drowning and oceanic anoxia.

     
  4. 4.

    Compare early diagenesis and compaction of Cretaceous platforms and their recent counterparts, again with particular emphasis on the effects of the greenhouse Earth.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, J. R. and Matthews, R. K. (1982) Isotope signatures associated with early meteoric diagenesis, Sedimentology 29, 797–817.CrossRefGoogle Scholar
  2. Arthur, M. A., Dean, W. E. and Schlanger, S. O. (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, in E. T. Sundquist and W. S. Broecker (eds.), The Carbon Cycles and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monograph, v. 32, pp. 504–529.CrossRefGoogle Scholar
  3. Arthur, M. A. and Schianger, S. O. (1979) Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields, Amer. Assoc. Petroleum Geologists, Bull. 63, 870–885.Google Scholar
  4. Berger, W. H. (1979) The impact of deep-sea drilling on paleoceanography, in M. Talwani, W. Hay and W. B. F. Ryan (eds.), Deep drilling results in the Atlantic Ocean: Continental margins and the paleoenvironment, American Geophysical Union, Washington D.C., pp. 297–314.CrossRefGoogle Scholar
  5. Berger, W. H. and Winterer, E. L. (1974) Plate stratigraphy and the fluctuating carbonate line, in K. J. Hsu and H. C. Jenkyns (eds.), Pelagic sediments–on land and under the sea, Spec. Publ. Int. Assoc. Sedim., v. 1, pp. 11–48.Google Scholar
  6. Burton, R., Kendall, Ch. G. St. C. and Lerche, I. (1987) Out of our depth: on the impossibility of fathoming eustasy from the stratigraphic record, Earth-Science Rev. 24, 237–277.CrossRefGoogle Scholar
  7. Cloetingh, S. (1986) Intraplate stresses: A new tectonic mechanism for fluctuations of relative sea level, Geology 14, 617–620.Google Scholar
  8. Corso, W. (1988) Development of the Early Cretaceous northwest Florida carbonate platform Dissert. Univ. Texas at Austin.Google Scholar
  9. Droxler, A. W., Bruce, C. H., Sager, W. W. and Watkins, D. K. (in press) Pliocene/Pleistocene variations of aragonite content and oxygen-isotope record in Bahamian periplatform ooze (ODP Site 633): evidence for long (.4 Ma) carbonate preservation cycles, Ocean Drilling Program, Final Reports, v. 101.Google Scholar
  10. Droxler, A. W. and Schlager, W. (1985) Glacial versus inter-glacial sedimentation rates and turbidite frequency in the Bahamas, Geology 13, 799–802.CrossRefGoogle Scholar
  11. Enos, P., Minero, C. J. and Aguayo-C., J. E. (1983) Sedimentation and diagenesis of mid-Cretaceous platform margin east-Central Mexico, with accompanying field guide, Dallas Geol. Soc., Dallas, 1–168.Google Scholar
  12. Fischer, A. G. (1982) Long-term oscillations recorded in stratigraphy, in W. Berger & J.C.Crowell (eds.), Climate in Earth History, National Acad. Press, Washington, D.C., pp. 97–104.Google Scholar
  13. Frakes, L. A. and Francis, J. E. (1988) A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous, Nature 333, 547–549.CrossRefGoogle Scholar
  14. Ginsburg, R. N. (ed.) (1975) Tidal deposits, Springer Verlag, New York.Google Scholar
  15. Ginsburg, R. N. et al. (1986) The Global Sedimentary Geology Program–Report of an International Workshop, Fisher Island, Florida.Google Scholar
  16. Goldstein, R. H. (1988) Cement stratigraphy of Pennsylvanian Holder Formation, Sacramento Mountains, New Mexico, Amer. Assoc. Petroleum Geologists 72, 425 438.Google Scholar
  17. Grigg, R. W. (1982) Darwin point: a threshold for atoll formation, Coral Reefs 1, 29–34.CrossRefGoogle Scholar
  18. Haak, A. B. and Schlager, W. (in press) Compositional variations in calciturbidites due to sealevel fluctuations, Late Quaternary, Bahamas, Geolog. Rundschau.Google Scholar
  19. Halley, R. B. and Harris, P.M. (1979) Fresh-water cementation of a 1,000-year-old oolite, J. Sedim. Petrol. 49, 969–988.Google Scholar
  20. Hallock, P. and Schlager, W. (1986) Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios 1, 389–398.CrossRefGoogle Scholar
  21. Hancock, J. M. and Kauffman, E. G. (1979) The great transgressions of the Late Cretaceous, J. Geol. Soc. London 136, 175–186.Google Scholar
  22. Hag, B. U., Hardenbol, J. and Vail, P. R. (1987) Chronology of fluctuating sea levels since the Triassic, Science 235, 1156–1167.CrossRefGoogle Scholar
  23. Hardie, L. A. (1977) Sedimentation on the modern carbonate tidal flats of northwest Andors Island, Bahamas, Johns Hopkins. Univ. Press, Baltimore.Google Scholar
  24. Hurley, N. F. and Van der Voo, R. (1987) Paleomagnetism of Upper Devonian reefal limestones, Canning Basin, Western Australia, Amer. Geolog. Society, Bull. 98, 138–146.Google Scholar
  25. Jansa, L. F. (1981) Mesozoic carbonate platforms and banks of the eastern North American margin“, Marine Geology 44, 97–117.CrossRefGoogle Scholar
  26. Jenkyns, H. C. (1980) Cretaceous anoxic events: from continents to oceans, J. Geol. Soc. London 137, 171–188.Google Scholar
  27. Koepnick, R. B., Burke, W. H., Denison, R. E., Hetherington, E. A., Nelson, H. F., Otto, J. B. and Waite, L. E. (1985) Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data, Chemical Geology 58, 55–81.Google Scholar
  28. Ludwig, K. R., Halley, R. B., Simmons, K. R. and Peterman, Z. E. (1988) Strontium-isotope stratigraphy of Enewetak Atoll, Geology 16, 173–177.CrossRefGoogle Scholar
  29. Masse, J. P. and Philip, J. (1981) Cretaceous coral-rudist buildups of France, in D. F. Toomey (ed.), European fossil reef models, Soc. Econ. Paleontologists Mineralogists Spec. Publ. no. 30, pp. 399–426.Google Scholar
  30. Matthews, R. K. (1984) Oxygen isotope record of ice volume history: 100 million years of glacio-eustatic sea-level fluctuation, in J. Schlee (ed.), Interregional unconformities and hydrocarbon accumulation, Amer. Assoc. Petroleum Geologists, Memoir 36, pp. 97–107.Google Scholar
  31. McNeill, D. F., Ginsburg, R. N., Shih-Bin R. Chang, Kirschvink, J. L. (1988) Magnetostratigraphic dating of shallow-water carbonates from San Salvador, The Bahamas, Geology 16, 8–12.Google Scholar
  32. Minero, C. J. (1988) Sedimentation and diagenesis along an island-sheltered platform margin, El Abra Formation, Cretaceous of Mexico, in N. P. James and P. Choquette (eds.), Paleokarst, Springer Verlag, New York, pp. 385–405.CrossRefGoogle Scholar
  33. Parrish, J. T. and Barron, E. J. (1986) Paleoclimates and economic geology, Soc. Econ. Paleontologists & Mineralogists, Short Course 18, 1–162.Google Scholar
  34. Sandberg, Ph. A. (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy, Nature 305, no. 5929, 19–22.CrossRefGoogle Scholar
  35. Schlager, W. (1981) The paradox of drowned reefs and carbonate platforms, Geol. Soc. Amer. Bull., 92, 197–211.CrossRefGoogle Scholar
  36. Schlager, W. and Camber, O. (1986) Submarine slope angles, drowning unconfor- mities, and self-erosion of limestone escarpments, Geology 14, 762–765.CrossRefGoogle Scholar
  37. Schlanger, S. O. (1981) Shallow-water limestones in oceanic basins as tectonic and paleoceanographic indicators, in J. E. Warme, R. G. Douglas and E. L. Winterer (eds.), The deep sea drilling project: a decade of progress, Soc. Econ. Paleontologists & Mineralogists, Spec. Publ. 32, pp. 209–226.Google Scholar
  38. Schlanger, S. O., Jenkyns, H.C. and Premoli-Silva, I. (1981) Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions, Earth and Planetary Sci. Lett. 52, 435–449.Google Scholar
  39. Schlanger, S. O. and Permoli Silva, I. (1986) Oligocene sea-level falls recorded in mid-Pacific atoll and archipelagic apron settings, Geology 14, 392–395.CrossRefGoogle Scholar
  40. Schmoker, J. W. and Halley, R. B. (1982) Carbonate porosity versus depth: a predictable relation for South Florida, Amer. Assoc. Petroleum Geologists, Bull. 66, 2561–2570.Google Scholar
  41. Shaw, A. B. (1964) Time in Stratigraphy, McGraw-Hill Book Company, New York. Strasser, A. (1988) Shallowing-upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains ), Sedimentology 35, 369–383.Google Scholar
  42. Toomey, D. F. (1981) European Fossil Reef Models, Soc. Econ. Paleontologists & Mineralogists, Spec. Publ. no. 30.Google Scholar
  43. Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M., Thompson, S., Sangree, J. B., Bubb, J. N. and Hatlelid, W. G. (1977) Seismic stratigraphy and global changes of sealevel, in Payton, C. E. (ed.), Seismic stratigraphy–Applications to hydrocarbon exploration, Amer. Assoc. Petroleum Geologists 26, 49–212.Google Scholar
  44. Watts, A. B. and Ribe, N. M. (1984) On geoid heights and flexure of the lithosphere at seamounts, J. Geophysical Research 89, B13, 11,152–11, 170.Google Scholar
  45. Wilde, P. and Berry, W. B. N. (1982) Progressive ventilation of the oceans–potential for return to anoxic conditions in the post-Paleozoic, in S. O. Schlanger and M. B. Cita (eds.), Nature and origin of Cretaceous carbon-rich facies, Academic Press, New York, pp. 209–224.Google Scholar
  46. Wilkinson, B. H., Owen, R. M. and Carroll, A. R. (1985) Submarine hydrothermal weathering, global eustasy and carbonate polymorphism in Phanerozoic marine oolites, J. Sedim. Petrol. 55, 171–183.Google Scholar
  47. Wilson, J. L. (1975) Carbonate facies in geologic history, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  48. Winterer, E. L., Natland, J.H. and Van Waasbergen, R. (in press) NW Pacific Cretaceous Guyots: Morphology, Stratigraphy and Latitudinal Histories, EOS Transactions.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • Wolfgang Schlager
    • 1
  • Jean Philip
    • 2
  1. 1.Earth SciencesFree UniversityAmsterdamThe Netherlands
  2. 2.Laboratoire de StratigraphieUniversite de ProvenceMarseille CedexFrance

Personalised recommendations