Advertisement

Cyclostratigraphy

  • A. G. Fischer
  • I. Premoli Silva
  • P. L. de Boer
Chapter
Part of the NATO ASI Series book series (ASIC, volume 304)

Abstract

The sedimentary record of orbitally-forced variations in climate has the potential to provide high-resolution dating to levels of a few hundred thousand years of less. Easily-measured, bed-to-bed variations in various components give the basic data for defining these rhythms. The Cretaceous is a particularly appropriate period for testing both the validity and the application of cyclostratigraphy.

Recommended specific short range objectives are: detailed comparative studies of time slices, in order to recognize the effect of orbital influences in different sedimentary environments, and to map the paleogeographic distributions of obliquity-dominated patterns versus precession-eccentricity dominated ones. This approach should illuminate Cretaceous climates and oceanography, and the pathways along which sedimentary systems were forced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, M.H., Krueger, S.W. Sadler, P.M. (1987) A new look at sedimentationGoogle Scholar
  2. rates and the completeness of the stratigraphic record. J. Geol. 95, 1–14.Google Scholar
  3. Anderson, R.Y (1982) A long geoclimatic record from the Permian. J. Geophys. Res. 87, 7285–729.Google Scholar
  4. Anderson, R.Y (1984) Orbital forcing of evaporite sedimentation. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate Pt. 1. Reidel, 147–162.Google Scholar
  5. Anderson, R.Y (1986) The varve microcosm; propagator of cyclic bedding. Paleoceanography 1, 373–382.CrossRefGoogle Scholar
  6. Barron, E.J., Arthur, M.A. Kauffman, E.G. (1985) Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate. Earth Plan. Sci. Lett. 72, 327–340.Google Scholar
  7. Bathurst, R.G.C. (1987) Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction. Sedimentology 34, 749–778.CrossRefGoogle Scholar
  8. Berger, A. (1976) Obliquity and precession for the last 5 000 000 years. Astron. Astrophys. 51, 127–135.Google Scholar
  9. Berger, A. (1977a) Support of the astronomical theory of climatic change. Nature 268, 44–45.CrossRefGoogle Scholar
  10. Berger, A. (1977b) Long term variations of the Earth’s orbital elements. Celestial Mechanics 15, 53–74.CrossRefGoogle Scholar
  11. Berger, A. (1978a) Long-term variations of daily insolation and Quaternary climatic changes. J. Atm. Sci. 35, 2362–2367.Google Scholar
  12. Berger, A. (1978b) Long-term variations of caloric insolation resulting from the earth’s orbital elements. Quat. Res. 9, 139–167.Google Scholar
  13. Berger, A. (1980) Milankovitch astronomical theory of paleoclimates, a modern review. Vistas in Astronomy 24, 103–122.CrossRefGoogle Scholar
  14. Berger, A. (1984) Accuracy and frequencies stability of the Earth’s orbital elements during the Quaternary. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate Pt. 1. Reidel, 3–39.CrossRefGoogle Scholar
  15. Berger, A. (1987) Pleistocene climatic variability at astronomical frequencies. In: Faure, H. Rutter, N. (Eds.) INQUA Symposium on Global Change. (in press)Google Scholar
  16. Berger, A.L. (1988) Milankovitch theory and climate. Rev. Geophys. (in press).Google Scholar
  17. Berger, A., Gall’ee, H., Fichefet, T., Marsiat, I. Tricot, Ch. (1988a) Testing the astronomical theory with a physical coupled climate ice sheet model. Scientific Report 1988/3, Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve.Google Scholar
  18. Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) (1984) Milan kovitch and Climate. Reidel.Google Scholar
  19. Berger, A. Loutre, M.F. (1987) Origine des fr’equences des ‘el’ements astro nomiques intervenant dans le calcul de l’insolation. Scientific Report 1987/13, Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve.Google Scholar
  20. Berger, A., Loutre, M.F. Dehant, V. (1987) Influence of the variation of the lunar orbit on the astronomical frequencies of the Pre-Quaternary paleo-insolation. Scientific Report 1987/15, Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve.Google Scholar
  21. Berger, A., Loutre, M.F. Laskar, J. (1988b) A new astronomical solution for the climate of the last 10 Myr. Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve. in prep.Google Scholar
  22. Berger, A. Pestiaux, P. (1984) Accuracy and stability of the Quaternary terrestrial insolation. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate Pt. 1. Reidel, 83–112.CrossRefGoogle Scholar
  23. Bernard, E.A. (1975) Les bases energetiques de la paleoclimatologie theoretique et evolution des climates. Ciel et Terre 91, 161–219.Google Scholar
  24. Bottjer, D.J., Arthur, M.A., Dean, W.E., Hattin, D.E. Savrda, C.E. (1986) Rhythmic bedding in Cretaceous pelagic carbonate environments: sensitive recorder of climatic cycles. Paleoceanography 1, 467–481.CrossRefGoogle Scholar
  25. Bradley, W.H. (1929) The varves and climate of the Green River epoch. U.S. Geol. Surv. Prof. Pap. 158-E, 87–110.Google Scholar
  26. Bramlette, M.N. (1946) The Monterey Formation of California and the origin of its siliceous rocks. U.S. Geol. Surv. Prof. Pap. 212, 55 pp.Google Scholar
  27. Clifton, H.E. (1981) Progradational sequences in Miocene shoreline deposits, SE Caliente Range, California. J. Sedim. Petrol. 51, 165–184.Google Scholar
  28. Cotillon, P. (1984) Tentative world-wide correlation of early Cretaceous strata by limestone-marl cyclicities in pelagic deposits. Bull. Geol. Soc. Denmark 33, 91–102.Google Scholar
  29. Cotillon, P. (1987) Bed-scale cyclicity of pelagic Cretaceous successions as a result of world-wide control. Marine Geol. 78, 109–123.CrossRefGoogle Scholar
  30. Cotillon, P. Rio, M. (1984) Cyclic sedimentation in the Cretaceous of Deep Sea Drilling Sites 535 and 540 (Gulf of Mexico), 534 (central Atlantic) and in the Vocontian Basin (France). Init. Rep. DSDP 77, 339–376.Google Scholar
  31. Darmedru, C. (1984) Variation au taux de sedimentation et oscillations climatiques lors du depots des alternances marnes-calcaires pelagiques. Examples du Valangien sup’erieur (SE de la France). Bull. Soc. Geol. France 26, 63–70.Google Scholar
  32. Darmedru, C., Cotillon, P. Rio, M. (1982) Rythmes climatiques et biologiques en milieu marin p’elagique. Leurs relations dans les d’ep“ots cr’etac’es alternants du bassin vocontien (Sud-Est de la France). Bull. Soc. g’eol. France 24, 627–640.Google Scholar
  33. De Boer, P.L. (1982) Cyclicity and the storage of organic matter in Middle Cretaceous pelagic sediments. In: Einsele, G. Seilacher, A. Cyclic and event stratification. Springer. 456–475.Google Scholar
  34. De Boer, P.L. (1983) Aspects of Middle Cretaceous pelagic sedimentation in S. Europe. Geol. Ultraiectina 31, 112 p.Google Scholar
  35. De Boer, P.L. (1986) Changes in the organic carbon burial during the Early Cretaceous. In: Summerhayes, C.P. Shakleton, N.J. (Eds.) North Atlantic Palaeoceanography. Geol. Soc. Lond. Spec. Publ. 21, 321–331.Google Scholar
  36. De Boer, P.L. Wonders, A.A.H. (1981) Milankovitch parameters and bedding rhythms in Umbrian Middle Cretaceous pelagic sediments. I.A.S. 2nd Eur. Meeting, Bologna. Abstr., 10–13.Google Scholar
  37. De Boer, P.L. Wonders, A.A.H. (1984) Astronomically induced rhythmic bedding in Cretaceous pelagic sediments near Moria (Italy). In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 177–190.Google Scholar
  38. Dean, W.E. Gardner, J.V. (1986)Milankovitch cycles in Neogene deep-sea sediment. Paleoceanography 1, 539–553.Google Scholar
  39. Dean, W.E., Gardner, J.V. Jansa, L.F. (1978) Cyclic sedimentation along the continental margin of Northwest Africa. in: Lancelot, Y., Seibold, E. et al. (1977) Initial Reports of the Deep Drilling Project, Vol. 41: Wash. (U.S. Governm. Printing Office ), 965–989.Google Scholar
  40. Dean, W.E., Gardner, J.V. Cepek, P. (1981) Tertiary carbonate-dissolution cycles on the Sierra Leone Rise, Eastern Equatorial Atlantic Ocean. Marine Geol. 39, 81–101.Google Scholar
  41. Denis, C. (1986) On the change of kinetical parameters on the Earth during geological times. Geophys. J.R. astr. Soc. 87, 559–568.Google Scholar
  42. Deprit, A., Bretagnon, P. Berger, A. (1984) Orbital elements and insolation. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 823–826.CrossRefGoogle Scholar
  43. Einsele, G. (1982) Limestone-marl cycles (periodites): diagnosis, significance, causes–a review. in: Einsele, G. Seilacher, A. Eds. ( 1982 ) Cyclic and event stratification. Springer (Berlin), 8–53.Google Scholar
  44. Emiliani, C. (1955) Pleistocene temperatures. J. Geol. 63, 538–578.CrossRefGoogle Scholar
  45. Erba, E. (1986) I nannofossil calcarei nel’ Aptiano-Albiano (Cretacio inferiore): Biostratigrafia paleoceanografia e diagenesi degli Scisti a Fucoidi del pozzo Piobbico (Marche). Ph.D. Diss. Univ. Milano. 313 pp.Google Scholar
  46. Ferry, S. Rubino, J.-L. (1987) La modulation du signal orbital dans les sediments pelagiques. C.R. Acad. Sci. Paris t. 305, ser. II, 477–482.Google Scholar
  47. Fischer, A.G. (1964) The Lofer Cyclothems of the Alpine Triassic. Kansas Geol. Survey Bull. 169, 107–149.Google Scholar
  48. Fischer, A.G. (1980) Gilbert - Bedding rhythms and geochronology. G.S.A. Spec. Pap. 183, 93–104.Google Scholar
  49. Fischer, A.G. (1981) Climatic oscillations in the biosphere. in: biotic crises in ecological and evolutionary time. Acad. Press, 103–131.Google Scholar
  50. Fischer, A.G. (1986) Climatic rhythms recorded in strata. Ann. Rev. Earth Plan. Sci. 14, 351–376.Google Scholar
  51. Fischer, A.G. Schwarzacher, W. 1984 Cretaceous bedding rhythms under orbital control? In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel, 163–175.Google Scholar
  52. Gilbert, G.K. (1895) Sedimentary measurement of Cretaceous time. J. Geol. 3, 121 127.Google Scholar
  53. Goldhammer, R.K, Dunn, D.A. Hardie, L.A. (1987) High-frequency glacio-eustatic sealevel oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in Northern Italy. Am. J. Sci. 287, 853–892.Google Scholar
  54. Hallam, A. (1986) Origin of minor limestone-shale cycles: climatically induced or diagenetic? Geology 14, 609–612.CrossRefGoogle Scholar
  55. Hallam, A., Hancock, J.M., LaBreque, J.L., Lowrie, W. Channel, J. (1985) Jurassic and Cretaceous geochronology and Jurassic to Paleogene magnetostratigraphy. Mem. Geol. Soc. Lond. 10, 118–140.Google Scholar
  56. Hardie, L.A., Bosellini, A. Goldhammer, R.K (1986) Repeated subaerial exposure of subtidal carbonate platforms, Triassic, Northern Italy: evidence for high frequency sea level oscillations on a 104 year time scale. Paleoceanogr. 1, 447–457.CrossRefGoogle Scholar
  57. Harland, W.B., Cox, A.V., Llewellyn, P.G., Pickton, C.A.G., Smith, A.G. Walters, R. (1982) A geologic time scale. Cambridge Univ. Press. 131 pp.Google Scholar
  58. Hart, M.B. (1987) Orbitally induced cycles in the chalk facies of the United Kingdom. Cret. Res. 8, 335–348.Google Scholar
  59. Hattin, D.E. (1986) Interregional model for deposition of Upper Cretaceous pelagic rhythmites, U.S. Western Interior. Paleoceanography 1, 483–494.Google Scholar
  60. Hays, J.D., Imbrie, J. Shackleton, N.J. (1976) Variations in the Earth’s orbit: pacemaker of the Ice ages. Science 194, 1121–1132.CrossRefGoogle Scholar
  61. Heckel, P.H. (1977) Black shale in Pennsylvania cyclothems. Am. Assoc. Petrol. Geol. Bull. 61, 1045–1068.Google Scholar
  62. Herbert, T.D. Fischer, A.G. (1986) Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743.CrossRefGoogle Scholar
  63. Herbert, T.D., Stallard, R.F. Fischer, A.G. (1986) Anoxic events, productivity rhythms, and the orbital signature in a mid-Cretaceous deep-sea sequence from central Italy. Paleoceanography 1, 495–506.CrossRefGoogle Scholar
  64. Hilgen, F.J. Langereis, C.G. (1989) Sedimentary cycles in the Mediterranean Pliocene: discrepancies with the quasi-periods of the Earth’s orbital cycles? Terra Abstracts 1, p. 241Google Scholar
  65. House, M.R. (1985) A new approach to an absolute time scale from measurements of orbital cycles and sedimentary micro-rhythms. Nature 315, 721–725.CrossRefGoogle Scholar
  66. Imbrie, J. Imbrie, J.Z. (1980) Modelling the climatic response to the orbital variations. Science 207, 943–953.CrossRefGoogle Scholar
  67. Imbrie, J. Imbrie, K.P. (1979) Ice ages: solving the mystery. Enslow Publ. Short Hills, N.J.Google Scholar
  68. Imbrie, J., Hays, J., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L. Shackleton, N.J. (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine d-180 record. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 269–305.Google Scholar
  69. Kauffman, E.G. (1988) Concepts and methods of high-resolution event stratigraphy. Ann. Rev. Earth Planet. Sci. 16, 605–654.Google Scholar
  70. Kemper, E. (1987) Das Klima der Kreide-Zeit. Geol. Jb. A96, 5–185.Google Scholar
  71. Kennedy, W.J. Odin, G.S. (1982) The Jurassic and Cretaceous time scale in 1981. In: (Odin, G.S. (Ed.) Numerical dating in stratigraphy. J. Wiley. 557–592.Google Scholar
  72. Kutzbach, J.E. Otto-Bliesner, B.L. (1982) The sensitivity of the African- Asian monsoonal climate to orbital parameter changes for 9000 years b.p. in a low-resolution general circulation model. J. Atm. Sci. 39, 1177–1188.Google Scholar
  73. Laferriere, A.P., Hattin, D.E. Archer, A.W. (1987) Effects of climate, tectonics and sea-level changes on rhythmic bedding patterns in the Niobrara Formation ( Upper Cretaceous ), U.S. Western Interior. Geology 15, 233–236.Google Scholar
  74. Milankovitch, M. (1941) Kanon der Erdbestrahlung and seine Anwendung auf das Eiszeitenproblem. Akad. Royale Serbe 133, 633 pp.Google Scholar
  75. Mörner, N.A. (1981) Revolution in Cretaceous sea-level analysis. Geology 9, 344–346.CrossRefGoogle Scholar
  76. Napoleone, G. Ripepe, M. Cyclic geomagnetic changes in the Mid Cretaceous black shale rhythms, Central Italy. (in prep.).Google Scholar
  77. Oerlemans, J. (1980) Model experiments on the 100,000 yr glacial cycle. Nature 287, 430–432.CrossRefGoogle Scholar
  78. Olsen, P.E. (1984) Periodicity of lake level cycles in the Late Triassic Lockatong Formation of the Newark Basin (Newark Supergroup, New Jersey and Pennsylvania. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 129–146.Google Scholar
  79. Olson, P.E. (1986) A 40-million year lake record of Early Mesozoic orbital forcing. Science 234, 842–848.CrossRefGoogle Scholar
  80. Park, J. Herbert, T.D. (1987) Hunting for paleoclimatic periodicities in a geologic time series with an uncertain time scale. J. Geophys. Res. 92, B13, 14,027 - WUGoogle Scholar
  81. Pestiaux, P. Berger, A. (1984) An optimal approach to the spectral characteristics of deep-sea climatic records. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 417–445.Google Scholar
  82. Pratt, L.M., Arthur, M.A., Dean, W.A. Scholle, P.A. Paleoceanographic cycles and events during the late Cretaceous in the Western Interior Seaway of North America. In: Caldwell, W.G.E. Kauffman, E.G. (Eds.) Evolution of Western Interior Basin. Geol. Assoc. Canada (in press)Google Scholar
  83. Prell, W.L. Kutzbach, J.E. (1987) Monsoon variability over the past 150,000 years. J. Geoph. Res. 92, D7, 8411–8425.CrossRefGoogle Scholar
  84. Premoli Silva, I., Erba, E. Tornaghi, M.E. (1989) Paleoenvironmental signals and changes in surface fertility in Mid Cretaceous C org-rich pelagic facies of the Fucoid Marls (Central Italy). (in press)Google Scholar
  85. Ricken, W. (1985) Epicontinental marl-limestone alternations: Event deposition and diagenetic bedding (U. Jurassic, SW Germany). In: Bayer, U. Seilacher, A. (Eds.) Sedimentary and evolutionary cycles. Lecture notes in Earth Sciences 1, 127–162.Google Scholar
  86. Ricken, W. (1986) Diagenetic bedding: a model for marl-limestone alternations. Lecture Notes in Earth Sci. 6. Springer. 210 pp.Google Scholar
  87. Ricken, W. (1987) The carbonate compaction law: a new tool. Sedimentology 34, 571–584.CrossRefGoogle Scholar
  88. Ripepe, M. (1988) StrataBase: a stratigraphical and processing program for microcomputers. Computers Geosci. 14, 369–375.CrossRefGoogle Scholar
  89. ROCC Group (1986) Rhythmic bedding in Upper Cretaceous pelagic carbonate sequences: varying response to orbital forcing. Geology 14, 153–156.Google Scholar
  90. Rossignol-Strick, M. (1983) African monsoons, an immediate climate response to orbital insolation. Nature 303, 46–49.CrossRefGoogle Scholar
  91. Roth, P.H. (1978) Cretaceous nannoplankton biostratigraphy of the Northwestern Atlantic Ocean. Init. Rep. D.S.D.P. 44, 731–759.Google Scholar
  92. Roth P.H. (1986) Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans. In: Summerhayes, C.P. Shakleton, N.J. (Eds.) North Atlantic Palaeoceanography. Geol. Soc. Lond. Spec. Publ. 21, 299–320.Google Scholar
  93. Sadler, P.M. (1981) Sediment accumulation rates and the completeness of the stratigraphic record. J. Geol. 89, 569–584.CrossRefGoogle Scholar
  94. Sander, B. (1936) Beitr“age zur Kenntnis der Ablagerungsgef’uge. Mineral. Petrogr. Mitt. 48, 27–139.Google Scholar
  95. Savrda, C.E. Bottjer, D.J. (1987) Trace fossil model for reconstruction of paleooxygenation in bottom waters. Geology 14, 3–6.CrossRefGoogle Scholar
  96. Schwarzacher, W. (1947) Uber die sedimentf’ase Rhytmik des Dachsteinkalkes von Lofer. Verh. Geol. Bundesanstalt 1947, H. 10–12, 175–188.Google Scholar
  97. Schwarzacher, W. (1954) Die Grossrhythmik des Dachsteinkalkes von Lofer. Tchermaks Mineral. Petrograph. Mitt. 4, 44–54.Google Scholar
  98. Schwarzacher, W. (1964) An application of statistical time-series analysis of a limestone-shale sequence. J. of Geol. 72, 195–213.CrossRefGoogle Scholar
  99. Schwarzacher, W. (1975) Sedimentation models and quantitative stratigraphy. Elsevier, 377 pp.Google Scholar
  100. Schwarzacher, W. (1987) The analysis and interpretation of stratification cycles. Paleoceanogr. 2, 79–95.CrossRefGoogle Scholar
  101. Schwarzacher, W. Fischer, A.G. (1982) Limestone-shale bedding and perturbations of the Earth’s orbit. in: Einsele, G. Seilacher, A. Eds. (1982) Cyclic and event stratification. Springer. 72–95.CrossRefGoogle Scholar
  102. Schwarzacher, W. Haas, J. (1966) Comparative statistical analysis of some Hungarian and Austrian Upper Triassic peritidal carbonate sequences. Acta Geol. Hungarica 29, 175–196.Google Scholar
  103. Shackleton, N.J. (1989) ODP Site 677: a case for revising the astronomical calibrationGoogle Scholar
  104. for the Brunhes-Matuyama and Jaramillo Boundaries. Terra Abstracts 1, p. 185.Google Scholar
  105. Southam, J.R., Peterson, W.H. Brass, G.W. (1982) Dynamics of anoxia. Palaeogeogr. Palaeclim. Palaeoecol. 40, 183–198.Google Scholar
  106. Stoyko, A. (1970) La variation s’eculaire de la rotation de la Terre et les probl’emes conexes. Ann. Gu’ebhard (Neuchatel) 46, 293–316.Google Scholar
  107. Strasser, A. (1988) Shallowing-upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains ). Sedimentology 35, 369–383.Google Scholar
  108. Strasser, A., Mojon, P.-O. Deconinck, J.-F. (1988) Detailed sequence stratigraphy as a tool for correlation between Tethyan and boreal realm at the Jurassic-Cretaceous boundary. In: Swennen, R. (Ed.) Abstr. 9th IAS Reg. Meet. Leuven, Belgium.Google Scholar
  109. Sujkowski, Z.L. (1958) Diagenesis. Am. Assoc. Petr. Geol. Bull. 42, 2692–2717.Google Scholar
  110. Surdam, R.C. Stanley, KO. (1978) Lacustrine sedimentation during the culminating phase of Eocene Lake Gosiute, Wyoming (Green River Formation). Geol. Soc. Am. Bull. 90, 93–110.Google Scholar
  111. Thierstein, H.R. Roth, P.H. (1989) Oxygen and carbon isotopic fluctuations in cyclic Cretaceous deep-sea sediments: dominance of diagenetic effects. Marine Geol. (in press).Google Scholar
  112. Tornaghi, M.E. (1984) Analisi delle ciclicita deposizionali degli Scisti a Fucoidi (Aptiano-Albiano) nella successione del pozzo Piobico (Marche). MSc Thesis, Univ. Milano (Italy) 220 pp.Google Scholar
  113. Tornaghi, M.E., Premoli Silva, I. Ripepe, M. (1989) Planktonic foraminiferal distribution records productivity cycles:evidence from the Aptian-Albian of Central Italy. Riv. Ital. Paleont. Strat. (in press).Google Scholar
  114. Tribovillard, N.P. (1988) Controles de la s’edimentation marneuse en milieu p’elagique semi-anoxique. Th’ese Doct. Universit’ Lyon 1. 110 pp.Google Scholar
  115. VandenBerg, J., de Boer, P.L. Kreulen, R. (1983) Longterm secular variations of the magnetic field recorded in Late Albian pelagic sediments. Geol. Ultraiectina 31, 105–111.Google Scholar
  116. Van Houten, F.B. (1962) Cyclic sedimentation and the origin of analcim-rich upper Triassic Lockatong, west-central New Jersey and adjacent Pennsylvania. Am. J. Sci. 260, 561–576.Google Scholar
  117. Van Houten, F.B. (1964) Cyclic lacustrine sedimentation, Upper Triassic Lockatong Formation, Central New Jersey and adjacent Pennsylvania. Kansas Geol. Survey Bull. 169, 497–531.Google Scholar
  118. Van Tassel, J. (1987) Upper Devonian Catskill delta margin cyclic sedimentation: Brallier, Scherr and Foreknobs Formations of Virginia and West Virginia. Geol. Soc. Am. Bull. 99, 414–426.Google Scholar
  119. Walker, J.C.G. Zahnle, K.J. (1986) Lunar nodal tide and the distance to the Moon during the Precambrian. Nature 320, 600–602.CrossRefGoogle Scholar
  120. Weedon, G.P. (1986) Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth Plan. Sci. Lett. 76, 321–335.Google Scholar
  121. Weedon, G.P. (1989) The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. J. Geol. Soc. London 146, 133–144.Google Scholar
  122. Wollin, G., Ericson, D.B., Ryan, W.B.F. Foster, J.H. (1971) Magnetism of the Earth and climatic changes. Earth Plan. Sci. Lett. 12, 175–183.CrossRefGoogle Scholar
  123. Wollin, G., Ryan, W.B.F. Ericson, D.B. (1978) Climatic changes, magnetic intensity variations and fluctuations of the eccentricity of the Earth’s orbit during the past 2,000,000 years and a mechanism which may be responsible for the relationship. Earth Plan. Sci. Lett. 41, 395–397.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • A. G. Fischer
    • 1
  • I. Premoli Silva
    • 2
  • P. L. de Boer
    • 3
  1. 1.Department of Geological SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Departmento de Scienze della TerraMilanItaly
  3. 3.Comparative SedimentologyInst. of Earth SciencesUtrechtThe Netherlands

Personalised recommendations