Advertisement

Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences

  • M. A. Arthur
  • H.-J. Brumsack
  • H. C. Jenkyns
  • S. O. Schlanger
Part of the NATO ASI Series book series (ASIC, volume 304)

Abstract

The Cretaceous is characterized by unusually widespread distribution of “black shales”-- sequences of variable lithology containing numerous beds with organic-carbon (OC) contents in excess of 1 percent by weight-- in both deep- and shallow-marine settings. General time envelopes of globally important organic-carbon burial during the Aptian-Albian, at the Cenomanian-Turonian boundary, and to a lesser extent in the Coniacian-Santonian, have been termed “Oceanic Anoxic Events (OAEs)”. The available stratigraphic and organic geochemical data and secular trends in the carbon isotopic composition of marine carbonates suggest that the timing of OC burial is broadly synchronous during these episodes and that the mass of OC buried during each is considerable. There may be other important episodes of more widespread OC burial, as yet poorly documented, such as the Valanginian- Hauterivian.

Despite the recent burgeoning of interest in the Cretaceous “black shale problem”, a host of very basic and important questions requires focused and intensive study. There is a pressing need for detailed biostratigraphic and chemostratigraphic zonation of “black-shale” sequences, for high-resolution sampling and analysis of organic and inorganic geochemical parameters, and for careful documentation of sedimentary structures in Cretaceous “black-shale” sequences from different paleoenvironments on a worldwide basis. These data are required to answer basic questions regarding the timing of OC burial events and the areal distribution of OC-rich strata (Are OAEs really globally synchronous? Are there shorter period episodes within longer time envelopes?) and their relation to tectonic, sea level and climatic events (episodes). In addition, such data will help to determine whether periods of organic matter enrichment indicate unusually high oceanic biological productivity (fertility), high rates of supply of terrestrial organic matter and consequent high carbon fluxes to sediments and/or enhanced preservation of organic matter under widespread oxygen-deficient deep-water masses as the result of very different rates of oceanic overturn and/or high nutrient concentrations.

There is a strong correspondence between organic matter burial and mineralization (e.g. phosphorites and stratiform iron and manganese ores as primary deposits and perhaps metal sulfide ores as secondary deposits), and an obvious link between the “black shales” and hydrocarbon occurrences. Globally widespread “black shale” deposition is not unique to the Cretaceous, having characterized parts of the Jurassic, Devonian and CambroOrdovician. However, the Cretaceous record offers a unique opportunity to develop a better understanding of the factors that led to such episodes of enhanced organic matter preservation in marine strata in the past, particularly during periods characterized by warm, more equable climate, maximum extent of shelf seas and pronounced volcanism.

The effort to elucidate this record will require collaboration of a broad spectrum of earth scientists, including sedimentologists, stratigraphers, paleontologists and geochemists. The efforts of Working Group 2 of the CRER-GSGP will also be coordinated closely with those of the other Working Groups because of the interconnections between tectonic events, climate (short-term cycles and longer-term trends) and sea level variations and resulting impacts on ocean-atmosphere chemistry, circulation, biotic evolution and productivity, and organic matter burial. A global perspective on Cretaceous black shale deposition should be developed. This will necessitate contributions from scientists in a number of countries towards development of a global data base of characteristics of Cretaceous black shales and an international program of drilling and coring of Cretaceous black shale sequences, which might involve other objectives of CRER as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addy, S.K., B.J. Presley, and M. Ewing, 1976. Distribution of manganese, iron and other trace elements in a core from the northwest Atlantic, J. Sed. Petrol., 46, 813–818.Google Scholar
  2. Arthur, M.A., 1979. North Atlantic Cretaceous black shales: the record at Site 398 and a brief comparison with other occurrences. In: Sibuet, J.-C., Ryan, W.B.F., et al., Initial Reports of the Deep Sea Drilling Project, v. 47, part 2: Washington (U.S. Government Printing Office ), 719–751.Google Scholar
  3. Arthur, M.A., 1982. The carbon cycle controls on atmospheric CO2 and climate in the geologic past. In: W.H. Berger and J.C. Crowell (eds) Climate in Earth History. Nat. Acad. Press, Washington, D.C., 55–67.Google Scholar
  4. Arthur, M.A. and Premoli Silva, I., 1982. Development of widespread organic-carbon rich strata in the Mediterranean Tethys. In: S.O. Schlanger and M.B. Cita (eds.) Nature of Cretaceous Carbon-Rich Facies. Academic Press, London, 7–54.Google Scholar
  5. Arthur, M.A., and W.E. Dean, 1986. Cretaceous Paleoceanography. In: Decade of North American Geology, Western North Atlantic Basin Synthesis Volume, B.E. Tucholke and P.R. Vogt, eds., Geol. Soc. Amer., 617–630.Google Scholar
  6. Arthur, M.A., W.E. Dean, and Stow, D.A.V., 1984. Models for the deposition of Mesozoic-Cenozoic fine-grained organic-carbon-rich sediments in the deep sea. In: Stow, D.A.V., and Piper, D., eds., Fine-Grained sediments: Geol. Soc. Lond. Spec. Publ., 527–562.Google Scholar
  7. Arthur, M.A., W.E. Dean, and S.O. Schianger, 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, In: The carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Mon. 32, edited by E.T. Sundquist and W.S. Broecker, AGU, Washington, D.C., 504–530.Google Scholar
  8. Arthur, M.A., W.E. Dean, and L.M. Pratt, 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/ruronian boundary, Nature, 335, 714–717.Google Scholar
  9. Arthur, M.A. and S.O. Schlanger, 1979. Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields, Bull. Am. Assoc. Pet. Geol., 63, 870–885.Google Scholar
  10. Arthur, M.A., S.O. Schlanger and H.C. Jenkyns, 1987. The Cenomanian-Turonian oceanic anoxic event, II. Paleoceanographic controls on organic matter production and preservation, in Marine Petroleum Source Rocks, edited by J. Brooks and A. Fleet, Geological Society of London, Spec. Pub. no. 26, 401–420.Google Scholar
  11. Bacon, M.P. and J.N. Rosholt, 1982. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise, Geochim. Cosmochim. Acta, 46, 651–666.Google Scholar
  12. Barron, E.J., 1985. Numerical climate modeling: an exploration frontier in petroleum source rock prediction, Am. Assoc. Petrol. Geol. Bull., 69, 448–456.Google Scholar
  13. Barron, E.J., 1987. Global Cretaceous paleogeography-International Geologic Correlation Program Project, 191. Paleogeog. Paleoclim. Paleoecol., 59, 207–214.Google Scholar
  14. Barron, E.J., M.A. Arthur, and E.G. Kauffman, 1985. Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate, Earth Planet. Sci. Lett., 72, 327–340.Google Scholar
  15. Belzille, N. and J. Lebel, 1986. Capture of arsenic by pyrite in near-shore marine sediments, Chem. Geol. 54, 279–281.Google Scholar
  16. Berner, R.A., 1984. Sedimentary pyrite formation: an update, Geochim Cosmochim. Acta, 48, 605–615.Google Scholar
  17. Berner, R.A. and R. Raiswell, 1983. Burial of organic carbon and pyrite sulphur in sediments over Phanerozoic time: a new theory, Geochim. Cosmochim. Acta, 47, 855862.Google Scholar
  18. Bertine, K.K. and E.D. Goldberg, 1977. History of heavy metal pollution in Southern California coastal zone - reprise, Environ. Sci. Tech., 11, 297–299.Google Scholar
  19. Bowen, H.J.M., 1979. Environmental chemistry of the elements, Academic Press, London, 333 pp.Google Scholar
  20. Boyle, E.A., F. Sclater and J.M. Edmond, 1976. The marine geochemistry of cadmium, Nature, 263, 42–44.Google Scholar
  21. Bralower, T.J., 1987. Valanginian to Aptian calcareous nannofossil stratigraphy and correlation with the Upper M-sequence Magnetic anomalies, Marine Micropaleontology, 11, 293–310.Google Scholar
  22. Bralower, T.J., 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implications for the origin and timing of anoxia, Paleoceanography, 3, 275–316.Google Scholar
  23. Bralower, T.J. and H.R. Thierstein, 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans: Geology, 12, 614–618.Google Scholar
  24. Bralower, T.J. and H.R. Thierstein, 1987. Organic carbon and metal accumulation rates in Holocene and mid-Cretacous marine sediments: paleoceanographic significance. In: Brooks, J., and Fleet, A., eds., Marine Petroleum Source Rocks, Geol. Soc. London Spec. Publ., no. 26, 345–369.Google Scholar
  25. Brass, G.W., J.R. Southam and W.H. Peterson, 1982. Warm saline bottom water in the ancient ocean, Nature, 296, 620–623.Google Scholar
  26. Brassell, S.C., G. Eglinton, and V.J. Howell, 1987. Palaeoenvironmental assessment of marine organic-rich sediments using molecular organic geochemistry, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 79–98.Google Scholar
  27. Bréhéret, J.G., 1985a. Indices d’un événement anoxique étendu à la Téthys alpine, à l’Albien inférieur (événenement Paquier). C.R. Acad. Sci., Paris, sér. II, 300, 355–358.Google Scholar
  28. Bréhéret, J.G.,1985b. Sedimentologie et diagenese de la matiere organique contenu dans le niveau Paquier, couche repere de l’ Albien interieur vocontien, C.R. Acad. Sci. Paris, t. 301, no. 15, 1151–1156.Google Scholar
  29. Brèhèret, J.G., M. Caron, and M. Delamette, 1986. Niveaux riches en matière organique dans l’Albien vocontien; quelques caractères du palèonenvironment; essai d’interpretation gènètique. In: Les couches riches en matière organique et leurs conditions de dèpôt, Doc. B.R.G.M., 110, 141–191.Google Scholar
  30. Brèhèret, J.G., 1988. Episodes de sedimentation riche en matiere organique dans les marnes bleues d’âge aptien et albien de la partie pélagique du bassin vocontien, Bull. Soc. Geol. France, sér. 8, 4, 349–356.Google Scholar
  31. Broecker, W.S. and T.-H. Peng, 1982. Tracers in the sea, Eldigio Press, Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY, 690 pp.Google Scholar
  32. Brongersma-Sanders, M., K.M. Stephan, T.G. Kwee and M. De Bruin, 1980. Distribution of minor elements in cores from the southwest Africa shelf with notes on plankton and fish mortality, Mar. Geol. 37, 91–132.Google Scholar
  33. Bruland, K.W., K. Bertine, M. Koide and E.D. Goldberg, 1974. History of metal pollution in Southern California coastal zone, Environ. Sci. and Techn., 8, 425–432.Google Scholar
  34. Bruland, K.W., 1983. Trace elements in sea water. In: Chemical Oceanography, v. 8 (J.P. Riley and R. Chester, Eds.), Academic Press, London, 45, 176–198.Google Scholar
  35. Brumsack, H.J., 1980. Geochemistry of Cretaceous Black Shales from the Atlantic Ocean (DSDP Legs. 11, 14, 36, and 41): Chem Geol., 31, 1–25.Google Scholar
  36. Brumsack, H.J. 1986. The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 447–462.Google Scholar
  37. Brumsack, H.J. and J. Thurow, 1986. The geochemical facies of black shales from the Cenomanian/Turonian Boundary Event (CTBE), In: Biogeochemistry of black shales (E.T. Degens, P.A. Meyers and S.C. Brassell, Eds.)., SCOPE/UNEP Sonderband, Mitt. Geol.-Palaeont. Inst. Univ. Hamburg, 60, 247–265.Google Scholar
  38. Burtner, R.L. and M.A. Warner, 1984. Hydrocarbon generation in Lower Cretaceous Mowry and Skull Creek Shales of the Northern Rocky Mountain area, In: J. Woodward, F.F. Meissner and J.L. Clayton, eds., Hydrocarbon Source Rocks of the Greater Rocky Mountain Region, Rocky Mountain Assoc. of Geol., Denver, 449–468.Google Scholar
  39. Burwood, R., 1984. Carbonate source rocks for six million barrels of oil per day-Zagros Fold Belt, Southwestern Iran, In: J.C. Palacas (ed.) Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. Amer. Assoc. Petrol. Geol. Studies in Geology, 18.Google Scholar
  40. Byers, C.W. and W. Larson, 1979. Paleoenvironments of Mowry shale (Lower Cretaceous), Western and Central Wyoming, Amer. Assoc. Pet. Geol. Bull., 63, 354–361.Google Scholar
  41. Calvert, S.E., 1976. The mineralogy and geochemistry of near-shore sediments, In: Chemical Oceanography, v. 6, J.P. Riley and R. Chester, Eds., Academic Press, London, 187–280.Google Scholar
  42. Calvert, S.E., 1983. Geochemistry of Pleistocene sapropels and associated sediments from the eastern Mediterranean, Oceanol. Acta, 6, 255–267.Google Scholar
  43. Calvert, S.E., 1987. Oceanographic controls on the accumulation of organic matter in marine sediments, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 137–151.Google Scholar
  44. Calvert, S.E. and N.B. Price, 1970. Minor metal contents of recent organic-rich sediments off southwest Africa, Nature, 227, 593–595.Google Scholar
  45. Cannon, W.F., and E.R. Force, 1983. Potential for high-grade shallow-marine manganese deposits in North America, in Unconventional Mineral Deposits, edited by W.C. Shanks III, Soc. Econ. Geol., Am. Inst. Mining, Met., and Pet. Eng., New York., 175–200.Google Scholar
  46. Caron, M., 1985. Cretaceous planktic foraminifera. In: Bolli H.M., J.B. Saunders, and K. Perch-Nielsen (eds.), Plankton Stratigraphy, Cambridge University Press, 17–86.Google Scholar
  47. Caron, M. and Homewood, P., 1983. Evolution of early planktic foraminifers Mar. Micropaleont., 7, 453–262.Google Scholar
  48. Chamberlin, T.C., 1906. On a possible reversal of deep-sea circulation and its influence on geologic climates, J. Geol., 14, 363–373.Google Scholar
  49. Chester, R. and J.H. Stoner, 1975. Trace elements in total particulate material from surface seawater, Nature 255, 50–51.Google Scholar
  50. Chester, R., A. Griffiths and J.H. Stoner, 1978. Minor metal content of surface seawater particulates and organic-rich shelf sediments, Nature, 275, 308–309.Google Scholar
  51. Claypool, G.E., W.T. Holser, I.R. Kaplan, H. Sakai, and I. Zak, 1980. The age curves of sulphur and oxygen isotopes in marine sulfate and their mutual interpretation, Chem. Geol., 28, 199–260.Google Scholar
  52. Cobler, R. and J. Dymond, 1980. Sediment trap experiment on the Galapagos spreading center, equatorial Pacific, Science, 209, 801–803.Google Scholar
  53. Coccioni, R., O. Nesci, M. Tramontana, F.-C. Wezel, and E. Moretti, 1987. Descrizione di un livello-guida “radiolaritico-bituminoso-ittiolitico” alla base delle Marne a Fuciodi nell’Appennino umbro-marchigiano, Boll. Soc. Geol. Ital., 106, 183–192.Google Scholar
  54. Colley, S., J. Thomson, T.R.S. Wilson and N.C. Higgs, 1984. Post-depositional migration of elements during diagenesis in brown clay and turbidite sequences in the North East Atlantic, Geochim. Cosmochim. Acta, 48, 1223–1235.Google Scholar
  55. Collier, R.W., 1984. Particulate and dissolved vanadium in the North Pacific Ocean, Nature, 309, 441–444.Google Scholar
  56. Collier, R.W. and J. Edmond, 1984. The trace element geochemistry of marine biogenic particulate matter, Prog. Oceanogr., 13, 113–199.Google Scholar
  57. Collier, R.W., 1985. Molybdenum in the northeast Pacific Ocean, Limnol. Oceanogr., 30, 1351–1354.Google Scholar
  58. Cotillon, P.H. and M. Rio, 1984. Cyclic sedimentation in the Cretaceous of Deep Sea Drilling Project Sites 535 and 540 (Gulf of Mexico), 534 (Central Atlantic), and in the Vocontian Basin (France), In: Buffler, R.T., W. Schlager, et al., Init. Repts. DSDP, 77: Washington, U.S. Government Printing Office, 339–376.Google Scholar
  59. Dean, W.E. and M.A. Arthur, 1986. Inorganic and organic geochemistry of Eocene to Cretaceous strata recovered from the lower continental rise, North American basin, Site 603, DSDP Leg 93, In: J.E. vanHinte, S.W. Wise, Jr., et al., Init. Repts. DSDP, 93: Washington, U.S. Government Printing Office, 1093–1137.Google Scholar
  60. Dean, W.E. and M.A. Arthur, 1989. Iron-sulfur-carbon relationships in organic-carbonrich sequences I: Cretaceous Western Interior Seaway, Am J. Sci, in press.Google Scholar
  61. Dean, W.E., M.A. Arthur, and G.E. Claypool, 1986. Depletion of 13C in Cretaceous marine organic matter: source, diagenetic or environmental signal, Mar. Geol., 70, 119157.Google Scholar
  62. Dean, W.E., M.A. Arthur and D.A.V. Stow, 1984a. Origin and geochemistry of Cretaceous deep-sea black shales ands multicolored claystones, with emphasis on Deep Sea Drilling Project Site 530, Southern Angola Basin. In: W.W. Hay, J.-C. Sibuet et al., Initial Reports of the Deep Sea Drilling Project, 75: Washington, D.C. (U.S. Government Printing Office), 819–844.Google Scholar
  63. Dean, W.E., G.E. Claypool and J. Thiede, 1984b. Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean, Org. Geochem., 7, 39–51.Google Scholar
  64. Dean, W.E. and J.V. Gardner, 1982. Origin and geochemistry of redox cycles of Jurassic to Eocene age, Cape Verde Basin (DSDP Site 367), continental margin of North-West Africa. In: Nature and origin of Cretaceous carbon-rich facies (S.O. Schlanger and M.B. Cita, Eds. ), Academic Press, 55–78.Google Scholar
  65. Dean, W.E. and N.L. Parduhn, 1984. Inorganic geochemistry of sediments and rocks recovered from the southern Angola Basin and adjacent Walvis Ridge, Sites 530 and 532, Deep Sea Drilling Project Leg 75. In: Init. Repts. of DSDP, v. LXXV ( W.W. Hay, J.C. Sibuet, et al., Eds.), U.S. Govt. Printing Office, 923–958.Google Scholar
  66. Dean, W.E., M. Leinen, and D.A.V. Stow, 1984c. Classification of deep sea fine-grained sediments. Jour. Sed. Petrol., 55, 250–256.Google Scholar
  67. De Boer, P., 1982. Cyclicity and the storage of organic matter in Middle Cretaceous pelagic sediments, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 456–473.Google Scholar
  68. De Boer, P., 1983. Aspects of middle Cretaceous pelagic sedimentation in northern Europe, Geologica Ultrajectina, 112 pp.Google Scholar
  69. De Boer, P., 1986. Changes in the organic carbon burial during the Early Cretaceous, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 321–331.Google Scholar
  70. Degens, E.T., K.-C. Emeis, B. Mycke, and M.G. Wiesner, 1986. Turbidites, the principal mechanism yielding black shales in the early deep Atlantic Ocean, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 361–376.Google Scholar
  71. Degens, E.T., P.A. Meyers and S.C. Brassell, eds., 1986. Biogeochemistry of Black Shales, SCOPE/UNEP, Mittel. Geol.-Paläontol. Inst. Univ. Hamburg, 60, 421pp.Google Scholar
  72. Demaison, G.J. and G.T., 1980. Anoxic environments and oil source bed genesis, Amer. Assoc. Petrol. Geol. Bull., 64, 1179–1209.Google Scholar
  73. Didyk, B.M., B.R.T. Simoneit, S.C. Brassell and G. Eglinton, 1978. Geochemical indicators of paleoenvironmental conditions of sedimentation, Nature, 272, 216–222.Google Scholar
  74. Dymond, J., K. Fischer, M. Clauson, R. Cobler, W. Gardner, M.J. Richardosn, W. Berger, A. Soutar and R. Dunbar, 1981. A sediment trap intercomparison study in the Santa Barbara Basin, Earth and Planetary Sci. Letters, 53, 409–418.Google Scholar
  75. Edwards, L.E., 1984. Insights on why graphic correlation ( Shaw’s method) works, J. Geol., 92, 583–597.Google Scholar
  76. Eicher, D.L. and R. Diner, 1985. Foraminifera as indicators of water mass in the Cretaceous Greenhorn Sea, Western Interior. In: L.M. Pratt, E.G. Kauffman and F.B. Zelt (eds.). Fine-grained deposits and biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes. SEPM, Field Trip Guidebook, 60–71.Google Scholar
  77. Einsele, G. and J. Wiedmann, 1982. Turonian black shales in the Moroccan coastal basins: First upwelling in the Atlantic Ocean? In: U. von Rad et al. (ed.), Geology of the Northwest African continental margin, Springer, Berlin-Heidelberg, 396–414.Google Scholar
  78. Eisler, R., 1981. Trace metal concentrations in marine organisms, Pergamon press, Oxford, 687 pp.Google Scholar
  79. Elder, W.P., 1987. The paleoecology of the Cenomanian-Turonian (Cretaceous) Stage boundary extinctions at Black Mesa, Arizona, Palaios, 2, 24–40.Google Scholar
  80. Emerson, S., 1985. Organic carbon preservation in marine sediments, In: The carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Mon. 32, edited by E.T. Sundquist and W.S. Broecker, AGU, Washington, D.C., 78–87.Google Scholar
  81. Espitalié, J., M. Madec, B. Tissot, J.J., Menning and P. Leplat, 1977. Source rock charactrerization method for petroleum exploration. Offshore Technology Conference, Houston, Paper 2935, 6 pp.Google Scholar
  82. Espitalié, J., G. Deroo, and F. Marquis, 1985. Rock Eval pyrolysis and its applications, Inst. Francais du Petrole, Direction de Recherche, No. 27299, 72 pp.Google Scholar
  83. Feely, R.A., G.J. Massoth and W.M. Landing, 1981. Major-and trace-element composition of suspended matter in the northeast Gulf of Alaska: relationships with major sources, Mar. Chem., 10, 431–453.Google Scholar
  84. Fischer, A.G., and M.A. Arthur, 1977. Secular variations in the pelagic realm, in Deep Water Carbonate Environments, Soc. Econ. Paleontol. Mineral. Spec. Pub. 25, edited by H.E. Cook and P. Enos, Society of Economic Paleontologists and Mineralogists, Tulsa, Okla., 19–50.Google Scholar
  85. Regal, A.R. and C.C. Patterson, 1983. Vertical concentration profiles of lead in theCentral Pacific at 15°N and 20°S, Earth and Planet. Sci. Letters, 64, 19–32.Google Scholar
  86. Flegal, A.R. and C.C. Patterson, 1985. Thallium concentrations in seawater, Mar.Chem., 15, 327–331.Google Scholar
  87. Flexer, A., A. Rosenfeld, S. Lipson-Benita, and A. Honigstein, 1986. Relative sea level changes during the Cretaceous in Israel, Bull. Amer. Assoc. Petrol. Geol, 70, 16851699.Google Scholar
  88. Force, E.R., W.F. Cannon, R.A. Koski, K.T. Passmore, and B. R. Doe, 1983. Influences of oceanic anoxic events on manganese deposition and ophiolite-hosted sulfide preservation, in Paleoclimate and Mineral Deposits, U.S. Geol. Surv. Circ. 822, edited by R. M. Cronin, W.F. Cannon,. and R.Z. Poore, U.S. Geological Survey, Washington, D.C., 26–29.Google Scholar
  89. Fowler, S.W., 1977. Trace elements in zooplankton particulate products, Nature 269, 5153.Google Scholar
  90. Frakes, L.A., and B.R. Bolton, 1984. Origin of manganese giants: Sea-level change and anoxic-oxic history, Geology, 12, 83–86.Google Scholar
  91. Fries, G. and B. Beaudoin, 1986. Resèdimentation de sapropels dans l’Apto-Albien du Bassin du Sud-Est (France), In: Les couches riches en matière organique et leurs conditions de dèpôt. Doc. B.R.g.M., 110, 193–206.Google Scholar
  92. Frush, M.P. and D.L. Eicher, 1975. Cenomanian and Turonian Foraminifera and paleoenvironments in the Big Bend region of Texas and Mexico, In: W.G.E. Caldwell (ed.), The Cretaceous System in the Western Interior of North America, Geological Assoc., Canada, Spec. Paper 13, 276–301.Google Scholar
  93. Gaida, K.-H., R. Gedenk, E. Kemper, W. Michaelis, R. Scheuch, H.-H. Schmitz, and W. Zimmerle, 1981. Lithologische, mineralogische und organisch-geochemische Untersuchungen an Tonsteinen und Tonmergelsteinen der Unterkreide Nordwest deutschlands (unter besonderer Berücksichtigung der Schwarzschiefer), Geol. Jb., Reihe A, 58, 15–47.Google Scholar
  94. Garrets, R.M. and A. Lerman, 1981. Phanerozoic cycles of sedimentary carbon and sulphur, Proc. Natl. Acad. Sci. USA, 78, 4652–4656.Google Scholar
  95. Gaupp, R. and D.J. Batten, 1983. Depositional setting of Middle to Upper Cretaceous sediments in the Northern Calcareous Alps from palynological evidence, Neues Jb. Geol. Paläont., Mh., 1983, 585–600.Google Scholar
  96. Govinden, A., 1982. Imprint of global “Cretaceous Anoxic Events” in east coast basins of India and their implications, Bull. ONGC, 19, 256–270.Google Scholar
  97. Graciansky, P.C., de, E. Brosse, G. Deroo, J.-P. Herbin, L. Montadert, C. Müller, J. Sigal, and A. Schaaf, 1982. Les formations d’age Crétacé de l’Atlantique Nord et leur matiere organique: paleogeographie et milieux de depot, Revue de l’Institut Francais du Petrole, 37, 275–337.Google Scholar
  98. Graciansky, P.C. de, G. Demo et al., 1984. A stagnation event of ocean-wide extent in the upper Cretaceous, Nature, 308, 346–349.Google Scholar
  99. Graciansky, P.C. de, E. Brosse, G. Deroo, J.-P. Herbin, L. Montadert, C. Müller, J. Sigal, and A. Schaaf, 1987. Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 317–344.Google Scholar
  100. Habib, D., 1983. Sedimentation-rate-dependent distribution of organic matter in the North Atlantic Jurassic-Cretaceous, In: R.E. Sheridan, F.M. Gradstein et al., Init. Repts. of DSDP, 76, Washington, U.S. Government Printing Office, 781–794.Google Scholar
  101. Hallam, A., and M.J. Bradshaw, 1979. Bituminous shales and oolitic ironstones as indicators of transgressions and regressions, J. Geol. Soc. London, 136, 157–164.Google Scholar
  102. Hallam, A., J.M. Hancock, J.L. LaBrecque, W. Lowrie and J.E.T. Channell, 1985, Jurassic and Cretaceous geochronology and Jurassic to Paleogene magnetostratigraphy, In: N.J. Snelling (ed.), The Chronology of the Geologic Record, Geol. Soc., Mem. 10, 118–170.Google Scholar
  103. Hallock, P. and W. Schlager, 1986. Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios, 1, 389–398.Google Scholar
  104. Hancock, J.M. and E.G. Kauffman, 1979. The great transgressions of the Late Cretaceous, Geol. Soc. London, 136, 175–186.Google Scholar
  105. Haq, B., J. Hardenbol, and P.R. Vail, 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present), Science, 235, 1156–1167.Google Scholar
  106. Harland, W.B., A.V. Cox, P.G. Llewellyn, C.A.G. Pickton, A.G. Smith, and R. Walters, 1982. A geologic time scale, Cambridge University Press, 131 pp.Google Scholar
  107. Hart, M.B. and P.J. Bigg, 1981. Anoxic events in the chalk seas of northwest Europe. In: J.W. Neale and M.D. Brasier (eds.), Microfossils from Recent and Fossil Seas. The British Micropalaeont. Soc., 177–185.Google Scholar
  108. Hay, W.W., 1972, Probabilistic Stratigraphy, Eclog. Geol. Helv., 65, 255–266.Google Scholar
  109. Heath, G.R., T.C. Moore, and J.P. Dauphin, 1977. Organic carbon in deep-sea sediments, In: N.R. Andersen and A. Malahoff, eds., Fate of Fossil Fuel CO2 in the Oceans, Plenum, N.Y., 605–628.Google Scholar
  110. Heinrichs, H., B. Schulz-Dobrick and K.W. Wedepohl, 1980. Terrestrial geochemistry of Cd, Bi, ‘n, Pb, Zn and Rb, Geochim. Cosmochim. Acta, 44, 1519–1533.Google Scholar
  111. Heinrichs, H., B. Wachtendorf, K.H. Wedepohl, B. Rössner and G. Schwedt, 1986. Hydrogeochemie der Quellen und kleineren Zuflüsse der Sösetalsperre ( Harz ), N.Jb. Miner. Abh., 156, 23–62.Google Scholar
  112. Herbert, T.D., R.F. Stallard and A.G. Fischer, 1986. Anoxic events, productivity rhythms, and the orbital signature in a mid-Cretaceous pelagic core, Paleoceanography, 1, 495–506.Google Scholar
  113. Herbin, J.P., E. Masure, and J. Roucaché, 1986. Cretaceous formations from the lower continental rise off Cape Hatteras: Organic geochemistry, dinoflagellate cysts, and the Cenomanian/Turonian boundary event at Sites 603 (Leg 93) and 105 (Leg 11), In: J.E. vanHinte, S.W. Wise, Jr., et al., Init. Repts. DSDP, 93: Washington, U.S. Government Printing Office, 1139–1162.Google Scholar
  114. Herbin, J.P., L. Montadert, C. Müller, R. Gomez, J. Thurow and J. Wiedmann, 1986. Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys, In: C.P. Summerhayes and N.J. Shackletion (eds.) North Atlantic Palaeoceanography, Geol. Soc. Spec. Publ., 21, 389–422.Google Scholar
  115. Herbin, J.P., C. Müller, P.C. de Graciansky, T. Jacquin, F. Magniez-Jannin, and P. Unternehr, 1987. Cretaceous anoxic events in the South Atlantic, Revista Brasileira de Geociencias, 17, 92–99.Google Scholar
  116. Hilbrecht, H., M.A. Arthur, and S.O. Schianger, 1986. The Cenomanian-Turonian boundary event: sedimentary, faunal and geochemical criteria developed from stratigraphic studies in NW Germany, In: O.H. Walliser (ed.), Global Bio-Events, Lecture Notes in Earth Science, Springer, Berlin-Heidelberg, 345–351.Google Scholar
  117. Hoffman, A., 1985. Patterns of family extinction depends on definition and geologic time scale, Nature, 315, 659–662.Google Scholar
  118. Holland, H.D., 1978. The chemistry of the atmosphere and oceans, Wiley and Sons, New York, 351 pp.Google Scholar
  119. House, M.R., 1985. Correlation of mid Paleozoic ammonoid evolutionary events with global sedimentary perterbations, Nature, 313, 17–22.Google Scholar
  120. Ibach-Johnson, L.E., 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments, Am Assoc. Petrol. Geol. Bull., 66, 170188.Google Scholar
  121. Irving, E. North, F.K. and Couillard, R., 1974. Oil, climate and tectonics, Can. J. Earth Sci., 11, 1–15.Google Scholar
  122. Jacobs, L. and S. Emerson, 1982. Trace metal solubility in an anoxic basin, Earth and Planet. Sci. Letters, 60, 237–252.Google Scholar
  123. Jacobs, L., S. Emerson and J. Skei, 1985. Partitioning and transport of metals across the 02/H2S interface in a permanently anoxic fjord, Framvaren Fjord, Norway. Geochim. Cosmochim. Acta, 49, 1433–1444.Google Scholar
  124. Jacobs, L., S. Emerson and S.S. Huested, 1987. Trace metal geochemistry in the Cariaco Trench, Deep Sea Research, 34, 965–981.Google Scholar
  125. Jarvis, I., G.A. Carson, M.K.E. Cooper, M.B. Hart, P.N. Leary, B.A. Tocher, D. Horne and A. Rosenfeld, 1988. Microfossil assemblages and the Cenomanian-Turonian Oceanic Anoxic Event, Cret. Res., 9, 3–103.Google Scholar
  126. Jeandel, C., M. Caisso and J.F. Minster, 1987. Vanadium behavior in the global ocean and in the Mediterranean Sea, Mar. Chem., 21, 51–74.Google Scholar
  127. Jenkins, J.A. and D.F. Williams, 1983. Nile River water as a cause of eastern Mediterranean sapropel formation: evidence for and against, Mar. Micropaleontol., 8, 521–534.Google Scholar
  128. Jenkyns, H.C., 1980. Cretaceous anoxic events: From continents to oceans, J. Geol. Soc. London, 137, 171–188.Google Scholar
  129. Jenkyns, H.C., 1985. The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts, Geol. Rundschau, 74, 505–518.Google Scholar
  130. Jenkyns, H.C., 1988. The Early Toarcian (Jurassic) Anoxic Event: stratigraphic, sedimentary and geochemical evidence, Am. J. Sci., 288, 101–151.Google Scholar
  131. Jenkyns, H.C., and J.C. Clayton, 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan lower Jurassic, Sedimentology, 33, 87–106.Google Scholar
  132. Jensen, T.F. and B. Buchardt, 1987. Sedimentology and geochemistry of the organic carbon-rich Lower Cretaceous Sola Formation (Barremian-Albian), Danish North Sea. In: Petroleum Geology of north west Europe, 1, ( Brooks, J. and Glennie, K.W., eds.), Graham and Trotman, London, 431–440.Google Scholar
  133. Jickells, T.D., W.G. Deuser and A.H. Knap, 1984. The sedimentation rates of trace elements in the Sargasso Sea measured by sediment trap, Deep Sea Research, 31, 1169 1178.Google Scholar
  134. Katz, B.J., 1983. Limitations of Rock-Eval pyrolysis for typing organic matter, Org. Geochem., 4, 195–199.Google Scholar
  135. Katz, B.J. and R.N. Pheifer, 1986. Organic geochemical characteristics of Atlantic ocean Cretaceous and Jurassic black shales, Marine Geology, 70, 43–66.Google Scholar
  136. Kauffman, E.G., 1984a. The fabric of Cretaceous marine extinctions, in, W.A. Berggren and J.A. van Couvering, eds., Catastrophies and Earth History: the new uniformitarianism, Princeton Univ. Press, 151–246.Google Scholar
  137. Kauffman, E.G., 1984b. Paleobiogeography and evolutionary response dynamics in the Cretaceous western interior seaway of North America, in G.E.G. Westermann, ed., Jurassic-Cretaceous Biochronology and Paleogeography of North America, Geol. Assoc. Canada Spec. paper 27, 273–306.Google Scholar
  138. Kauffman, E.G., 1988. Concepts and methods of high-resolution event stratigraphy, Ann. Rev. Earth Planet. Sci., 16, 605–654.Google Scholar
  139. Kemper, E. and W. Zimmerle, 1978. Die anoxischen Sedimente der präoberaptischen Unterkreide NW-Deutschlands und ihr paläogeographisches Rahmen. Geol. Jb., Reihe A, 45, 3–41.Google Scholar
  140. Krishnaswami, S., 1976. Authigenic transition elements in Pacific pelagic clays, Geochim. Cosmochim. Acta, 40, 425–434.Google Scholar
  141. Krishnaswami, S. and M.M. Sarin, 1976. Atlantic surface particulates: composition, settling rates and dissolution in the deep sea, Earth and Planet. Sci. Lett., 32, 430–440.Google Scholar
  142. Krumbein, W.C. and L.L. Sloss, 1963. Stratigraphy and Sedimentation, W.H. Freeman, San Francisco, 660 pp.Google Scholar
  143. Kuhnt, W., J. Thurow, J. Wiedmann, and J.P. Herbin, 1986. Oceanic anoxic conditions around the Cenomanian/Turonian boundary and the response of the biota. In: Biogeochemistry of Black Shales (Degens, E.T., Meyers, P.A. and Brassell, S.C., eds.), Mitt. Geol.-Paläont. Inst. Univ. Hamburg, 60, 205–246.Google Scholar
  144. Landing, W.M. and R.A. Feely, 1981. The chemistry and vertical flux of particles in the northeastern Gulf of Alaska, Deep Sea Research, 28, 19–37.Google Scholar
  145. Lange, J., 1974. Geochemische Untersuchungen an pelagischen Sedimenten des atlantischen und pazifischen Ozean (DSDP, Leg I-VII). PhD Thesis, University of Göttingen, FRG, 126 pp.Google Scholar
  146. Lange, J., K.H. Wedepohl, H. Heinrichs and E. Gohn, 1977. Notes about the specific chemical composition of “black shales” from Site 367 (Leg 41). In: Init. Repts. of the DSDP, v. XLI ( Y. Lancelot, E. Seibold, et al. Eds.), U.S. Govt. Print. Office, Washington, 875–877.Google Scholar
  147. Leckie, R.M., 1989. An oceanographic model for the early evolutionary history of planktonic foraminifera, Palaeogeog., Palaeoclim., Palaeoecol., in press.Google Scholar
  148. Leine, L., 1986. Geology of the Tarfaya oil shale deposit, Morocco, Geol. en Mijnbouw, 65, 57–74.Google Scholar
  149. Levanthal, J.S., 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition, Geochim. Cosmochim. Acta, 47, 133–137.Google Scholar
  150. Macellari, C.E. and T.J. DeVries, 1987. Late Cretaceous upwelling and anoxic sedimentation in northwestern South America, Palaeogeog., Palaeoclim., Palaeoecol., 59, 279–292.Google Scholar
  151. Mangini, A. and J. Dominik, 1979. Late Quaternary sapropel on the Mediterranean Ridge: U-budget and evidence for low sedimentation rates, Sed. Geol., 23, 113–125.Google Scholar
  152. Martin, J.H. and G.A. Knauer, 1973. The elemental composition of plankton, Geochim. Cosmochim. Acta, 37, 1639–1653.Google Scholar
  153. Martin, J.H., K.W. Bruland and W.W. Broenkow, 1976. Cadmium transport in the California current. In: Marine pollutant transfer (H.L. Windom and R.A. Duce, Eds. ), Lexington Books, 159–184.Google Scholar
  154. Martin, J.H., G.A. Knauer and R.M. Gordon, 1983. Silver distributions and fluxes in north-east Pacific waters, Nature, 305, 306–309.Google Scholar
  155. Martin, J.-M. and M. Whitfield, 1983. The significance of the river input of chemical elements to the ocean. In: Trace metals in sea water, (C.S. Wong et al., Eds), NATO Conference Series, Plenum Publishing Corp., New Yor, 265–296.Google Scholar
  156. Matsumoto, T., 1980. Inter-regional correlation of transgressions and regressions in the Cretacoeus period, Cretaceous Res., 1, 359–373.Google Scholar
  157. McCoy, F.W., and H.B. Zimmerman, 1977. A history of sediment lithofacies in the South Atlantic Ocean, In: K. Perch-Nielsen, P. Supko et al., Init. Repts. of the DSDP, 75, Washington, U.S. Government Printing Office, 1074–1079.Google Scholar
  158. McNeil and W. Caldwell, 1981. Cretaceous Rocks and Their Foraminifera in the Manitoba Escarpment, Geol. Assoc. Canada Special Paper No. 21,.Google Scholar
  159. Measures, C.I., B. Grant, M. Khadem, D.S. Lee and J.M. Edmond, 1984. Distribution of Be, Al, Se and Bi in the surface waters of the western North Atlantic and Caribbean, Earth and Planet. Sci. Letters, 71, 1–12.Google Scholar
  160. Meyers, P. A., S.C. Brassell, and A.Y. Huc, 1984. Geochemistry of organic carbon in South Atlantic sediments from DSDP Leg 75, in Hay, W.W., Sibuet, J.C. et al., Initial Reports of DSDP, Leg 75: Washington (U.S. Govt. Print. Off. ), 967–982.Google Scholar
  161. Meyers, P.A. and R.M. Mitterer,1986. Deep ocean black shales, organic geochemistry and paleoceanographic setting, Marine Geology, 70, 1–8.Google Scholar
  162. Moullade, M., 1966. Etude stratigraphique et micropaléontologique du Crétacé inférieur de la “Fosse Vocontienne”, Doc. Lab. Géol. Fac. Sci. Lyon, 15, 369 pp.Google Scholar
  163. Müller, P.J. and E. Suess, 1979. Productivity, sedimentation rate and sedimentary organic carbon content in the oceans-I. Organic carbon preservation, Deep-Sea Res., 26A, 1347–1362.Google Scholar
  164. Müller, C., A. Schaaf and J. Sigal, 1984. Biochronostratigraphie des formations d’age Crétacé dans les forages du DSDP dans l’ocean Atlantique Nord, Rev. Inst. Francais Pet., vol. 38, 39, 45 pp.Google Scholar
  165. Ng, A. and C.C. Patterson, 1982. Changes of lead and barium with time in California offshore basin sediments, Geochim. Cosmochim. Acta, 46, 2307–2321.Google Scholar
  166. North, F.K., 1980. Episodes of source-sediment deposition: The episodes in individual close-up, J. Petrol. Geology, 2–3, 323–338.Google Scholar
  167. Ozimic, S., 1982. The geology and petrophysics of the Toolebuc Formation and its laterally contiguous time equivalents, Eromanga and Carpenteria Basins, In: Eomanga Basin Symposium, Adelaide, South Australia, Petrol. Explor. Soc. Australia. Palmer, A.R., 1983. The DNAG time scale, Geology, 11, 182.Google Scholar
  168. Parrish, J.T. and R. L. Curtis, 1982. Atmospheric circulation, upwelling and organic-rich rocks in the Mesozoic and Cenozoic eras, Palaeogeogr., Palaeoclim., Palaeoecol., 40, 67–101.Google Scholar
  169. Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils, In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (eds.), Plankton stratigraphy, Cambridge University Press, 329–426.Google Scholar
  170. Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis, Am. Assoc. Petrol. Geol. Bull., 70, 318–329.Google Scholar
  171. Pettijohn, F.J., 1957. Sedimentary Rocks, Harper and Row, New York, 718 pp.Google Scholar
  172. Pratt, L.M., 1984. Influence of paleoenvironmental factors on preservation of organic matter in the mid-Cretaceous Greenhorn formation, Pueblo, Colorado. Amer. Assoc. Petrol. Geol. Bull., 68, 1146–1159.Google Scholar
  173. Pratt, L.M. and C.N. Threlkeld, 1985. Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, U.S.A.. In: The Mesozoic of middle North America. Can. Soc. Petrol. Geol., 9, 305–312.Google Scholar
  174. Pratt, L.M. and J.D. King, 1986. Variable marine productivity and high eolian input recorded by rhythmic black shales in mid-Cretaceous pelagic deposits from central Italy, Paleoceanography, 1, 507–522.Google Scholar
  175. Premuzic, E.T., C.M. Benkovitz, J.S. Gaffrey and J.J. Walsh, 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochem., 4, 63–77.Google Scholar
  176. Ramsden, A.R., 1983. Microscopic petrography of oil shales at Julia Creek, Northwestern Queensland, Journ. Geol. Soc. Australia, 30, 17–23.Google Scholar
  177. Ramsden, A.R., B.L. Dickson, and R.L. Meakins, 1982. Origin and significance of the Toolebuc gamma-ray anomaly in parts of the Eromanga Basin, Jour. Geol. Soc. Australia, 29, 285–296.Google Scholar
  178. Rau, G.H., M.A. Arthur, and W.E. Dean, 1987. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry, Earth Planet. Sci. Lett., 82, 269–279.Google Scholar
  179. Raup, D.M. and J.J. Sepkoski, 1982. Mass extinctions in the marine fossil record. Science, 215, 1501–1503.Google Scholar
  180. Rossignol-Strick, M. W. Nesteroff, P. Olive, and C. Vergnaud-Grazzini, 1982. After the deluge: Mediterranean stagnation and sapropel formation, Nature, 295, 105–110.Google Scholar
  181. Roth, P.H., 1986. Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 299–320.Google Scholar
  182. Roth, P.H., 1987. Mesozoic calcareous nannofossil diversity: relation to paleoceanographic events, Paleoceanography, 2, 601–611.Google Scholar
  183. Roth, P.H. and H.R. Thierstein, 1972. Calcareous nannoplankton: Leg 14 of the Deep Sea Drilling Project. In: D.E. Hayes, A. C. Pimm et al, Init. Reports Deep Sea Drilling Project, 14. U.S. Government Printing Office, Washington, D.C., 421–485.Google Scholar
  184. Roth, P.H. and J. Bowdler, 1981. Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. In: J.E. Warme, R.G. Douglas and E.L. Winterer (eds.), The Deep Sea Drilling Project: a decade of progress, Soc. Econ. Paleontol. Mineral. Spec. Publ., 517–546.Google Scholar
  185. Roth, P.H. and K.R. Krumbach, 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: Implications for paleoceanography. Mar. Microplaeontology, 235–266.Google Scholar
  186. Ryan, W.B.F. and M.B. Cita, 1977. Ignorance concerning episodes of ocean-wide stagnation, Mar. Geol., 23, 197–215.Google Scholar
  187. Sarmiento, J.L., T.D. Herbert and J.R. Toggweiler, 1988. Causes of anoxia in the world ocean, Global Biogeochemical Cycles, 2, 115–128.Google Scholar
  188. Sarnthein, M., K. Winn, J.-C. Duplessy and M.R. Fontugne, 1988. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years, Paleoceanography, 3, 36 1399.Google Scholar
  189. Savrda, C.E. and Bottjer, D.J., 1986. Trace-fossil model for reconstruction of paleooxygenation of bottom waters. Geology, 14, 3–6.Google Scholar
  190. Schlanger, S.O., 1986. High frequency sea-level fluctuations in Cretaceous time: an emerging geophysical problem. In K.J. Hsü (ed.) History of Mesozoic and Cenozoic Oceans. Amer. Geophys. Union Geodynam. Ser. 15, 61–74.Google Scholar
  191. Schianger, S.O., and H.C. Jenkyns, 1976. Cretaceous oceanic anoxic events: Causes and consequences, Geol. en Minj., 55, 179–184.Google Scholar
  192. Schianger, S.O., and M.B. Cita. 1982. Introduction, in Nature and Origin of Cretaceous Carbon-Rich Facies, edited by S.O. Schlanger and M.B. Cita, Academic Press, New York., 1–6.Google Scholar
  193. Schianger, S.O., M.A. Arthur, H.C. Jenkyns and P.A. Scholle, 1987. The CenomanianTuronian oceanic anoxic event, I. Stratigraphy and Distribution of organic carbon-rich beds and the marine a13 excursion, In: Marine Petroleum Source Rocks, J. Brooks and A. Fleet, (eds.), Geological Society of London, Spec. Publ. 26, 371–399.Google Scholar
  194. Scholle, P.A., and M.A. Arthur, 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, Am. Assoc. Pet. Geol. Bull., 64, 67–87.Google Scholar
  195. Schwarzacher, W. and A.G. Fischer, 1982. Limestone-shale bedding and perturbations of the earth’s orbit, In: G. Einsele and A. Seilacher (eds.), Cyclic and Event Stratification, Springer, Berlin-Heidelberg, 72–95.Google Scholar
  196. Sclater, F.R., E. Boyle and J.M. Edmond, 1976. On the marine geochemistry of nickel, Earth and Planet. Sci. Letters, 31, 119–128.Google Scholar
  197. Scotese, C.R. and C.P. Summerhayes, 1986. Computer model of paleoclimate predicts coastal upwelling in the Mesozoic and Cenozoic. Geobyte, 28–42.Google Scholar
  198. Shaw, A.B., 1964. Time in stratigraphy, McGraw Hill, Inc., New York, 365 pp.Google Scholar
  199. Sheridan, R.E., 1986. Pulsation tectonics as the control of North Atlantic paleoceanography, In: North Atlantic Paleoceanography (C.P. Summerhayes and N.J. Shackleton, Eds.), Geol. Soc. Spec. Publ., 21, 255–275.Google Scholar
  200. Shiller, A.M. and E. Boyle, 1985. Dissolved zinc in rivers, Nature, 317, 49–52.Google Scholar
  201. Sigal, J, 1977. Essai de zonation du Crétacé Méditerranéen à l’aide des foraminifères planktoniques, Geologie Méditerranée, 4, 99–108.Google Scholar
  202. Sissingh, W., 1977. Biostratigraphy of Cretaceous Calcareous Nannoplankton, Geol. Mijnbouw, 56., 37–65.Google Scholar
  203. Sliter, W.V., 1981. Albian foraminifers from the lower Cretaceous Christopher Formation of the Canadian Arctic Islands: Geological Survey of Canada Bulletin 300, 41–70.Google Scholar
  204. Sliter, W.V., 1989. Biostratigraphic zonation for Cretaceous planktonic foraminifers examined in thin section, J. Foram. Res., 19, 1–19.Google Scholar
  205. Sliter, W.V., 1989. An early Aptian anoxic event in the Pacific Ocean, Geology, in press.Google Scholar
  206. Spencer, D.W., P.G. Brewer and P.L. Sachs, 1972. Aspects of the distribution and trace element composition of suspended matter in the Black Sea, Geochim. Cosmochim. Acta, 36, 71–86.Google Scholar
  207. Stanley, S.M. 1984. Temperature and biotic crises in the marine realm, Geology, 12, 205208.Google Scholar
  208. Statham, P.J., J.D. Burton and W.A. Maher, 1987. Dissolved arsenic in waters of the Cape Basin, Deep-Sea Res., 34, 1353–1359.Google Scholar
  209. Stein, R., 1986. Surface-water paleo-productivity as inferred from sediments deposited in oxic and anoxic deep-water environments of the Mesozoic Atlantic Ocean, In: Degens, E.T., P.A. Meyers and S.C. Brassell, eds., Biogeochemistry of Black Shales, SCOPE/UNEP, Mittel. Geol.-Paläontol. Inst. Univ. Hamburg, 60, 55–70.Google Scholar
  210. Stoeppler, M. and H.W. Nürnberg, 1979. Comparative studies on trace metal levels in marine biota, Ecotoxicology and Environmental Safety, 3, 335–351.Google Scholar
  211. Strom, K.M., 1936. Land-locked waters, Skifter Norsk. Viden-Akad, Oslo I, 1–84.Google Scholar
  212. Summerhayes, C.P., 1981. Organic facies of Middle Cretaceous black shales in deep North Atlantic: American Association of Petroleum Geologists Bulletin, 65, 2364–2380.Google Scholar
  213. Summerhayes, C.P., 1987. Organic-rich Cretaceous sediments from the Atlantic. In: Marine Petroleum Source Rocks (Brooks, J. and A.J. Fleet, eds.), Spec. Publ. Geol. Soc. London, 26, 301–316.Google Scholar
  214. Takayanagi, K. and G.T.G. Wong, 1985. Dissolved inorganic and organic selenium in the orca Basin, Geochim. Cosmochim. Acta, 49, p. 539.Google Scholar
  215. Tarduno, J.A., M. McWilliams, M.G. Debiche, W.V. Sliter, and M.C. Blake, Jr., 1985. Franciscan complex Calera limestones: accreted remants of Farallon Plate oceanic plateaus, Nature, 317, 345–347.Google Scholar
  216. Thiede, J. and T.H. van Andel, 1977. The paleoenvironment of anaerobic sediments in the late Mesozoic South Atlantic Ocean. Earth Planet. Sci. Lett., 33, 301–309.Google Scholar
  217. Thierstein, H.R., 1973. Lower Cretaceous Calcareous Nannofossil Biostratigraphy, Abh. Geol. Bund, 24, 52 pp.Google Scholar
  218. Thierstein, H.R., 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments, Mar. Micropaleontology, 1, 325–362.Google Scholar
  219. Thierstein, H.R. 1979. Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep sea sediments, in Talwani, M., Hay, W.W., and Ryan, W.B. F., eds., Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment: Washington, American Geophysical Union, Maurice Ewing Series, 3, 249–274.Google Scholar
  220. Thierstein, H.R., 1983. Trends and events in Mesozoic Oceans. In: CNC/SCOR Proceedings of the Joint Oceanographic Assembly, 1982, Canadian National Committee/Scientific Committee on Oceanic Research, 127–130.Google Scholar
  221. Thomson, J., M.S.N., Carpenter, S. Colley, T.R.S. Wilson, H. Elderfield and H. Kennedy, 1984. Metal accumulation rates in northwest Atlantic pelagic sediments, Geochim. Cosmochim. Acta, 48, 1935–1948.Google Scholar
  222. Tissot, B. 1979. Effects on prolific petroleum source rocks and major coal deposits caused by sea-level changes, Nature, 277, 463–465.Google Scholar
  223. Tissot, B.P. and D.H. Weite, 1984. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration, Springer-Verlag, Berlin. 2nd ed., 699 pp.Google Scholar
  224. Tissot, B., G. Deroo, and J.P. Herbin. 1979. Organic matter in Cretaceous sediments of the North Atlantic: contributions to sedimentology and paleogeography. In: Talwani, M., Hay, W. W., and Ryan, W.B.F., eds., Deep drilling in the Atlantic Ocean: continental margins and paleoenvironment: American Geophysical Union, Maurice Ewing Series, 3, 362–374.Google Scholar
  225. Tissot, B., G. Demaison, P. Masson, J.R. Delteil, and A. Combaz. 1980. Paleoenvironment and petroleum potential of middle Cretaceous black shales in Atlantic basins, Amer. Assoc. Petrol. Geol. Bull., 64, 2051–2063.Google Scholar
  226. Trask, P.D., 1932. Origin and environment of source sediments of petroleum, Gulf Publ. Co., Houston, 564 pp.Google Scholar
  227. Trefry, J.H. and B.J. Presley, 1976. Heavy metal transport from the Mississippi river to the Gulf of Mexico, In: Marine pollutant transfer (H.L. Windom and R.A. Duce, Eds. ), Lexington Books, 159–184.Google Scholar
  228. Tuchoke, B.E. and P.R. Vogt, 1979. Western North Atlantic: sedimentary evolution and aspects of tectonic history, In: B.E. Tucholke, P.R. Vogt et al., Init. Repts. of the DSDP, 43, Washington, U.S. Government Printing Office, 791–825.Google Scholar
  229. Vail, P.R., R.M. Mitchum, Jr., and S. Thompson III. 1977. Global cycles of relative changes of sea level, in Seismic Stratigraphy-Applications to Hydrocarbon Exploration, Am. Assoc. Pet. Geol. Mem. 26, C.E. Payton, ed., American Association of Petroleum Geologists, Tulsa, Okla., 83–98Google Scholar
  230. Van der Gracht, W.A.J.M. 1931. Permocarboniferous orogeny in South-central United States, Amer. Assoc. Petrol. Geol. Bull, 15, 991–1057.Google Scholar
  231. van Grass, G. 1982. Organic geochemistry of Cretaceous black shale deposits from Italy and France, Delft Univ. Press, 95 pp.Google Scholar
  232. Veeh, H.H., 1967. Deposition of uranium from the ocean, Earth and Planet. Sci. Letters, 3, 145–150.Google Scholar
  233. Vine, J.D. and E.B. Tourtelot, 1970. Geochemistry of black shale deposits - a summary report, Econ. Geol., 65, 253–272.Google Scholar
  234. Wall, J.H.. 1983. Jurassic and Cretaceous foraminiferal biostratigraphy in the eastern Sverdrup Basin, Canadian Arctic Archipelago, Canadian Petroleum Geology, 31, 246281.Google Scholar
  235. Waples, D.W. 1983. Reappraisal of anoxia and organic richness, with emphasis on Cretaceous of North Atlantic, Am. Assoc. Petrol. Geol. Bull., 67, 963–978.Google Scholar
  236. Wedepohl, K.H., 1960. Spurenanalytische Untersuchungen an Tiefseetonen aus dem Atlantik, Ein Beitrag zur Deutung der geochemischen Sonderstellung von pelagischen, Tonen. Geochim. Cosmochim. Acta, 18, 200–231.Google Scholar
  237. Wedepohl, K.H., 1969–1978. (Edt.) Handbook of Geochemistry, v. II, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  238. Wedepohl, K.H., 1970. Environmental influences on the chemical composition of shales and clays, In: Physics and Chemistry of the Earth, v. 8 ( L.H. Ahrens et al., Eds.), Pergamon Press, Oxford and New York, 305–333.Google Scholar
  239. Weissert, H. 1981. The environment of deposition of black shales in the early Cretaceous: an ongoing controversy, In: Warme, J.E., Douglas, R.G., and Winterer, E.L.., eds., The Deep Sea Drilling Project: a decade of progress: Society of Economic Paleontologists and Mineralogists Special Publication 32, 547–560.Google Scholar
  240. Weissert, H., J.A. McKenzie, and J.E.T. Channell, 1985. Natural variations in the carbon cycle during the Early Cretaceous, In: The Carbon Cycle and Atmospheric CO2: natural variations Archean to Present (Sundquist, E. and Broecker, W.S., eds.), Am. Geophys. Union, Monograph Ser. 32, 531–547.Google Scholar
  241. Wilde, P. and W.B.N. Berry, 1982. Progressive ventilation of the oceans-potential for return to anoxic conditions in the post-Paleozoic, In: Schlanger, S.O. and M.B. Cita, eds., Nature and origin of Cretaceous carbon-rich facies, Academic Press, N.Y., 209224.Google Scholar
  242. Williams, D.F., R.C. Thunell, and J.P. Kennett. 1978. Periodic fresh-water flooding and stagnation of the eastern Mediterranean Sea during the late Quaternary, Science, 201, 252–254.Google Scholar
  243. Woolnough, W.G., 1937. Sedimentation in barred basins, and source rocks of oil, Amer. Assoc. Petrol. Geol., 21, 1101–1157.Google Scholar
  244. Zimmerman, H.B., A. Boersma and F.W. McCoy, 1987. Carbonaceous sediments and paleoenvironments of the Cretaceous South Atlantic Ocean, In: J. Brooks and A. Fleet (eds.), Marine Petroleum Source Rocks. Geol. Soc. Spec. Publ., 26, 271–286.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • M. A. Arthur
    • 1
  • H.-J. Brumsack
    • 2
  • H. C. Jenkyns
    • 3
  • S. O. Schlanger
    • 4
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA
  2. 2.Geochemisches InstitutGottingenGermany
  3. 3.Department of Earth SciencesUniversity of OxfordOxfordUK
  4. 4.Department of Geological SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations