Advertisement

Relevance of Cretaceous Volcanic Activity to CRER

  • S. O. Schlanger
  • M. A. Arthur
Chapter
Part of the NATO ASI Series book series (ASIC, volume 304)

Abstract

Intense, global volcanic activity with peaks in the Aptian-Albian and Campanian-Maestrichtian may have had significant effects on sea level changes, paleobathymetry and circulation of the Pacific Ocean, chemistry of the atmosphere and hydrosphere and global climates, and the distribution and evolution of faunas and floras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, M.A., W.E. Dean, and L.M. Pratt, 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, 335: 714–717.CrossRefGoogle Scholar
  2. Arthur, M.A., W.E. Dean, and S.O. Schlanger, 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, In: Sundquist, E.T. and W.S. Broecker, Eds., The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Amer. Geophys. Union, Washington, DC, Geophysical Monogr., 32: 504–530.Google Scholar
  3. Axelrod, D.I., 1981. Role of volcanism in climate and evolution, Geol. Soc. Amer. Spec. Paper, 185, 37 pp.Google Scholar
  4. Barron, E.J. and W.M. Washington, 1984. The role of geographic variables in explaining paleoclimates, results from Cretaceous model sensitivity studies, J. Geophys. Res., 89: 1267–1279.CrossRefGoogle Scholar
  5. Courtillot, V., G. Fraud, H. Maluski, D. Vandamme, M.G. Moreau, and J. Besse, 1988.Google Scholar
  6. Deccan flood basalts and the Cretaceous/Tertiary boundary, Nature,333: 843–846.Google Scholar
  7. Crough, S.T., 1978. Thermal origin of mid-plate hot-spot swells, Geophys. J. Royal Astronom. Soc., 55: 451–469.CrossRefGoogle Scholar
  8. Detrick, R.S. and S.T. Crough, 1978. Island subsidence, hot spots, and lithospheric thinning, J. Geophys. Res., 83: 1236–1244.CrossRefGoogle Scholar
  9. Frakes, L.A. and J.E. Francis, 1988. A guide to Phanerozoic cold polar climates from high-latitude ice rafting in the Cretaceous, Nature, 333: 547.CrossRefGoogle Scholar
  10. Hamilton, E.L., 1956. Sunken islands of the Mid-Pacific Mountains, Geol. Soc. Amer. Mem., 64: 93 pp.Google Scholar
  11. Lasaga, A.C., R.A. Berner, and R.M. Garrels, 1985. An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years, In: Amer. Geophys. Union, Geophys. Monogr. 32: 397–411.Google Scholar
  12. McLean, D.M., 1985. Deccan Traps Mantle degassing in the terminal Cretaceous marine extinctions, Cretaceous Res., 6: 235–259.CrossRefGoogle Scholar
  13. Officer, C.B., A. Hallam, C.L. Drake, and J.D. Devine, 1987. Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions, Nature, 326: 143–149.CrossRefGoogle Scholar
  14. Rea, D. and T. Vallier, 1983. Two Cretaceous volcanic episodes in the western Pacific Ocean, Geol. Soc. Amer. Bull., 94: 1430–1437.CrossRefGoogle Scholar
  15. Schlanger, S.O., H.C. Jenkyns, and I. Premoli-Silva, 1981. Volcanism and vertical tectonics in the Pacific Basin related to the global Cretaceous transgression, Earth Planet. Sci. Ltrs., 52: 435–449.CrossRefGoogle Scholar
  16. Schianger, S.O. and I. Premoli-Silva, 1981. Tectonic, volcanic, and paleogeographic implications of redeposited reef faunas of Late Cretaceous and Tertiary age from the Nauru Basin and the Line Islands, Init. Repts. DSDP, 61: 817–827.Google Scholar
  17. Stoiber, R.E., S.N. Williams, and B.J. Huebert, 1987. Annual contribution of sulfur dioxide to the atmosphere by volcanoes, J. Volcanol. Geotherm. Res., 33: 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • S. O. Schlanger
    • 1
  • M. A. Arthur
    • 2
  1. 1.Department of Geological SciencesNorthwestern UniversityEvanstonUSA
  2. 2.School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations