Advertisement

Development of Silicon Nitride Based Matrices

  • Jesper Brandt
  • Kent Rundgren
  • Robert Pompe
  • Robert Lundberg
  • Lars Pejryd
Chapter

Abstract

A feasible way to produce SiC long fibre reinforced Si3N4 is by vacuum infiltration of Si3N4 slurry followed by reaction bonding of the matrix. To minimize degradation of the fibres the nitridation reaction has to take place at moderate temperatures. In the present work a number of Si3N4-matrices processed by a modified RBSN technique and mixed with ZrO2-additives to optimize the nitridation cycle will be discussed. The results show that ZrO2 has a remarkably accelerating effect on the nitridation. It is thus possible to decrease the exposure of SiC fibres to high temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S M Lee, “International Encyclopedia of Composites”, 267–277, 297–332 (1990).Google Scholar
  2. 2.
    T-I Mah, M G Mendiratta, A P Katz and K S Mazdiyasni, “Recent Developments in Fiber-Reinforced High Temperature Ceramic Composites”, Am. Ceram. Soc. Bull. 66 (2), 304–308 (1987).Google Scholar
  3. 3.
    M Prewo, “Fiber-Reinforced Ceramics: New Opportunities for Composite Materials”, Am. Ceram. Soc. Bull. 68 (2), 395–400 (1989).Google Scholar
  4. 4.
    J R Strife, J J Brennan and K M Prewo, “Status of Continuous Fiber-Reinforced Ceramic Matrix Composite Processing Technology”, Ceram. Eng. Sci. Proc. 11 (7–8), 871–919 (1990).CrossRefGoogle Scholar
  5. 5.
    J A DiCarlo, “CMCs for the Long Run”, Adv. Mater. Process. inc. Met. Prog. 135 (6), 41–44 (1989).Google Scholar
  6. 6.
    P J Lamicq, G A Bernhart, M M Dauchier and J G Mace, “SiC/SiC Composite Ceramics”, Am. Ceram. Soc. Bull. 65 (2), 336–338 (1986).Google Scholar
  7. 7.
    D K Shetty, M R Pascucci, B C Mutsuddy and R R Wills, “SiC Monofilament-Reinforced Si3N4 Matrix Composites”, Ceram. Eng. Sci. Proc. 632–645 (1985).Google Scholar
  8. 8.
    A S Fareed, P Fang, M J Koczak and F M Ko, “Thermomechanical Properties of SiC Yarn”, Am. Ceram. Soc. Bull. 66 (2), 353–358 (1987).Google Scholar
  9. 9.
    F K Ko, “Preform Fiber Architecture for Ceramic-Matrix Composites”, Am. Ceram. Soc. Bull. 68 (2), 401–414 (1989).Google Scholar
  10. 10.
    D B Fishbach and P M Lemoine, “ Influence of a CVD Carbon Coating on the Mechanical Property Stability of Nicalon SiC Fiber”, Comp. Sci. Techn. 37, 55–61 (1990).CrossRefGoogle Scholar
  11. 11.
    R Lundberg, PhD Thesis, ISBN 91-7032-441-7, Chalmers University of Technology, Gösteborg (1989).Google Scholar
  12. 12.
    P Barron-Antolin, G H Schiroky and C A Andersson, “Properties of Fiber-Reinforced Alumina Matrix Composites”, Ceram. Eng. Sci. Proc. 9 (7–8), 759–766 (1988).CrossRefGoogle Scholar
  13. 13.
    R Pompe, L Hermansson and R Carlsson, “Fabrication of Low Shrinkage Silicon Nitride Material by Pressureless Sintering”, Brit. Ceram. Soc. 11 p. 65 (1981).Google Scholar
  14. 14.
    K Rundgren, J Brandt, R Pompe and R Carlsson, “Low Cost Nitrided Pressureless Sintered Si2N2O-ZrO2 Composite”, In manuscript, To be presented at European Ceramic Society Second Conference, Augsburg, Sept 11–14 (1991).Google Scholar
  15. 15.
    P L Antona, A Giachello and P C Martinengo, Ceramic Powders 753 (1983).Google Scholar
  16. 16.
    L K L Falk, PhD Thesis, ISBN 91-7032-262-7, Chalmers University of Technology, Göteborg (1986).Google Scholar
  17. 17.
    C O’Meara, PhD Thesis, ISBN 91-7032-384-4, Chalmers University of Technology, Göteborg (1988).Google Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • Jesper Brandt
    • 1
  • Kent Rundgren
    • 1
  • Robert Pompe
    • 1
  • Robert Lundberg
    • 2
  • Lars Pejryd
    • 2
  1. 1.Swedish Ceramic Institute (SCI)GöteborgSweden
  2. 2.Volvo Flygmotor ABTrollhättanSweden

Personalised recommendations