Sinter-Canning for Hip-Processing of Silicon Nitride

  • Horst Wedemeyer
  • Hans-Joachim Ritzhaupt-Kleissl
  • Elmar Günther


A new sinter-canning method has been developed for the coating of silicon nitride parts prior to hot-isostatic pressing. This method is based on thick-film technology. Using sol-gel methods different shapes of silicon nitride have been coated with an alumina or zirconia gel. After drying and sintering a dense layer of the oxides are formed, suitable as a ceramic canning material. Following the HIP-process, dense silicon nitride is achieved with a surface layer containing the aluminium or zirconium ions in a crystalline phase. This method of sinter-canning prevents the formation of glassy phases and can be used for a variety of ceramics to be densified by hot-isostatic pressing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Okada, H., Homma, K., Fujikawa, T. and Kanda, T., Fabrication of dense Si3N4 by hot-isostatic pressing, Proc. 6th Intern. World Congr. High Tech Ceramics, Milan, Italy 1986. In High Tech Ceramics, Part A, ed. P. Vincencini, Elsevier, Amsterdam, Oxford, New-York, Tokyo 1987, pp. 1023–32.Google Scholar
  2. 2.
    Heinrich, J. and Bohmer, M., Werkstoff-und Bauteileentwicklung durch heiBisostatisches Pressen am Beispiel von Siliciumnitrid. In Keramische Komponenten for Fahrzeug-Gasturbinen III, Springer, Berlin 1984, pp. 159–65.CrossRefGoogle Scholar
  3. 3.
    Heinrich, J. and Bohmer, M., Comparison of sinter-HIP and canning HIP of RBSN and Si3N4 powder compacts. In Ceramic Materials and Components for Engines, eds. Bunk, W. and Hausner, H., Deutsche Keramische Gesellschaft 1986, pp. 243–53.Google Scholar
  4. 4.
    Budd, K.D. and Payne, D.A., Ceramic processing of thin-layer capacitors by sol-gel methods, Proc. 2nd Intern. Conf. Ceramic Powder Processing Science, Berchtesgaden, Fed. Rep. of Germany, 1988. In Ceramic Powder Processing Science, eds. Hausner, H., Messing, G.L. and Hirano, S., Deutsche Keramische Gesellschaft 1989, pp. 513–20.Google Scholar
  5. 5.
    Abell, J.S., Wellhofer, F. and Shields, T.C., Textured superconducting thick-films of YBa2CU307-x, Proc. 1st European Ceramic Soc. Conf., Maastricht, The Netherlands, 1989. In Euro-Ceramics, eds. de With, G., Terpstra, R.A. and Metselaar, R., Elsevier Applied Science, London, New York 1989, Vol. 2, pp.476–80.Google Scholar
  6. 6.
    Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K. and Nihara, K., A superplastic covalent crystal composite, Nature (London), 1990, 344, 421–3.CrossRefGoogle Scholar
  7. 7.
    Chen, I-W., Xue, L.A., Development of superplastic structural ceramics, J Am. Ceram. Soc., 1990, 73, 2585–609.CrossRefGoogle Scholar
  8. 8.
    Pouskouleli, G., Metallorganic compounds as preceramic materials I. Nonoxide ceramics, Ceramic International, 1989, 15, 213–29.CrossRefGoogle Scholar
  9. 9.
    Pouskouleli, G., Metallorganic compounds as preceramic materials II. Oxide ceramics, Ceramic International, 1989, 15, 255–70.CrossRefGoogle Scholar
  10. 10.
    Szweda, A., Hendry, A. and Jack, K.H., The preparation of silicon nitride from silica by sol-gel processing, Proc. British Ceramic Soc., 1981, 7, 107–13.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • Horst Wedemeyer
    • 1
  • Hans-Joachim Ritzhaupt-Kleissl
    • 1
  • Elmar Günther
    • 1
  1. 1.Kernforschungszentrum Karlsruhe GmbHInstitut für Materialforschung, IMF IIIKarlsruheFed Rep. of Germany

Personalised recommendations