Self-Reinforced Silicon Nitride — A new Microengineered Ceramic

  • Aleksander J. Pyzik
  • Daniel F. Carroll
  • C. James Hwang
  • Arthur R. Prunier


A low cost, high fracture toughness silicon nitride material can be obtained through the in-situ growth of whisker-like elongated grains. This ability to form a reinforced material in-situ during densification avoids the processing difficulties and potential health hazards generally associated with whisker reinforced ceramic composites. The in-situ growth of elongated silicon nitride grains is controlled by the glass phase chemistry and processing conditions. A new class of self-reinforced silicon nitride materials have been developed based upon the Si3N4-Y2O3-MgO-CaO system, where yttrium can be replaced by seven other elements, magnesium can be replaced by six other elements and calcium with 19 other elements. These compositions have been found to yield fine grained, high aspect ratio silicon nitride ceramics with a unique combination of high flexure strength and fracture toughness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drew P., Lewis M.H., The microstructures of silicon nitride ceramics during hot pressing transformations, J Mat Sci., 1974, 9, pp. 261–69.CrossRefGoogle Scholar
  2. 2.
    Lange F.F., Fracture toughness of Si3N4 as a function of the initial α-phase content, J. Amer. Ceram. Soc, 1979, 62, pp. 428–30.CrossRefGoogle Scholar
  3. 3.
    Wotting G., Kanka B.,and Ziegler G., Microstructural development, microstructural characterization and relation to mechanical properties of dense silicon nitride. In Non-Oxide Technical and Engineering Ceramics, ed. S. Hampshire, Elsevier, London, 1986, pp. 83–96.CrossRefGoogle Scholar
  4. 4.
    Selkregg K.R, More K.L., Seshadri S.G.,and McMurty C.H., Microstructural characterization of silicon nitride ceramics processed by pressureless sintering, overpressure sintering, and sinter hip, Ceram. Eng. Sci. Proc. 1990, 11, 7-8, pp. 603–15.CrossRefGoogle Scholar
  5. 5.
    Lee RR, Nowich B.E., Franks G., Quellette D., Milford M.A., Ferber M.K., Hubbard C.R, and More K., Duophase sialon for ceramic engine component application, presented at the 93rd American Ceram. Soc. Mtg., Cincinnati, OH, April 29, 1991.Google Scholar
  6. 6.
    Quinn G. D. and Braue W.R., Secondary phase devitrification effects upon the static fatigue resistance of sintered silicon nitride, Ceram Eng. Proc, 1990, 11, 7-8, pp. 616–632.CrossRefGoogle Scholar
  7. 7.
    Shang-Xian, Wu, Compliance and stress-intensity factor of chevron-notched three-point bend specimen, Chevorn-Notched Specimens’ Testine-and Stress Analysis ASTM STP 855, ed. S. W. Frieman and F. I. Baratta, ASTM, Philadelphia, 1984, pp.177–192.Google Scholar
  8. 8.
    Pyzik J.A, Beaman D.R., Self-reinforced silicon nitride, J Amer Ceram Soc, to be published.Google Scholar
  9. 9.
    Pyzik A.J., Dubensky W.J., Schwarz D.B., and Beaman D.R., U.S. Pat. No. 4, 883, 776, 1989.Google Scholar
  10. 10.
    Pyzik A.J., Schwarz D.B., Dubensky W.J., and Beaman D.R., U.S. Pat. No. 4, 919, 689, 1990.Google Scholar
  11. 11.
    Pyzik A.J., Schwarz D.B., Beaman D.R. and Dubensky W. J., U.S. Pat. No. 5, 021, 372, 1991.Google Scholar
  12. 12.
    Vincenzini P. and Babini G.N., The influence of secondary phases on densification, microstructure and properties of hot pressed silicon nitride, In Sintered Metal-Ceramic Composites ed. by G.S. Upadhyaya, Elsevier Sci. Publish., Amsterdam, Niderlands, 1984, pp. 425–54.Google Scholar
  13. 13.
    Brice J.C., The growth of crystals from liquids, ed. E.P. Wohlfarth, Selected Topics In Solid State Physics, v. 12, Nort Holland/American Elsevier, London, 1973, pp. 227–45.Google Scholar
  14. 14.
    Khamskii E.V., Crystallization From Solutions, Consultants Bureau, New York-London, 1969, pp. 47–8.Google Scholar
  15. 15.
    Hwang C.J and Tien T.Y., Microstructural development in silicon nitride ceramics, Material Science Forum, 1989, 47, pp. 84–109.CrossRefGoogle Scholar
  16. 16.
    Becher P.F., Microstructural design of toughened ceramics, J Amer Ceram Soc, 1991, 74, 2, pp. 255–69.CrossRefGoogle Scholar
  17. 17.
    Li, C. W. and Yamanis, J., Super-tough silicon nitride with R-curve behavior, Ceram. Eng Sci. Proc, 10, (7-8), 1990, pp. 632–645.Google Scholar
  18. 18.
    Hwang C.J. and Tien T.Y., A critical evaluation of the microstructural effect on the fracture toughness of silicon nitride, presented at the 90th American Ceram Soc Mtg., Cincinnati OH, 1988.Google Scholar
  19. 19.
    Ito J., Silicate Apatites and Oxyapatites, Am Mineralogist, 53, 1968, pp. 890–907.Google Scholar
  20. 20.
    Samanta S.K., and Subramanian K., Hot pressed Si3N4 as a high performance cutting tool material, Proc. 13th N Amer. Manufact. Res. Conf., SME, Dearborn Michigan, 1985, pp.402–407.Google Scholar
  21. 21.
    Kramer B.M., On tool materials for high speed machining, ASME Prod. Ene-. Div., 1984, 12, pp.127–40.Google Scholar
  22. 22.
    Baldoni J.G., Wayne F., and Buljan S.T., Cutting tool materials: mechanical properties — wear-resistance relationships, ASLE Trans, 1985, 29, 3, pp. 347–52.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • Aleksander J. Pyzik
    • 1
  • Daniel F. Carroll
    • 1
  • C. James Hwang
    • 1
  • Arthur R. Prunier
    • 1
  1. 1.Central Research Advanced Ceramics LaboratoryThe Dow Chemical CompanyMidlandUSA

Personalised recommendations