The Influence of Fibers, Matrices, and Interfaces on the Properties of Ceramic Matrix Composites

  • John J. Brennan
  • James R. Strife
  • Karl M. Prewo


With the interest in ceramic matrix composites for high temperature structural applications increasing around the world during the past decade, especially for use in heat engines, a myriad of different systems and different processing procedures have emerged. Among the types of CMC’s under investigation are: whisker reinforced crystalline and glass-ceramics, and continuous carbide, oxide, and nitride fiber reinforced ceramics. The range of fabrication methods is diverse and includes hot-press densification of glasses, glass-ceramics, and crystalline ceramics, sol-gel infiltration and pyrolysis of ceramics, polymer precursor infiltration and pyrolysis, reactive oxidation of metals, reactive sintering, and chemical vapor infiltration (CVI) of silicon based ceramics.

In all of these composite systems, it has been found that in order to achieve high strength and, in particular, high toughness, the characteristics of the fiber/matrix interface must be controlled such that the bond is strong enough to allow load transfer from the matrix to the fibers under stress, but weak enough so that an advancing matrix crack can be deflected by the fibers. In addition, the nature of the fiber/matrix interface must include high temperature stability and resistance to environmental attack. Examples of CMC’s with both weak and strong interfacial bonding will be discussed, with emphasis on SiC and Si3N4 type continuous fibers in glass and glass-ceramic matrices, as well as SiC, C, and oxide continuous fibers in CVI SiC matrices.

Progress in the application of ceramic matrix composites to heat engines will also be discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katz, N.R.: Applications of Nitrogen Ceramics—Gas Turbines: U.S. National Programs, Nitrogen Ceramics, edited by F. L. Riley, Noordhoff Publishing, Netherlands, 1977, 643–646.CrossRefGoogle Scholar
  2. 2.
    Persh, J: An Assessment of the Department of Defense Ceramic Materials and Structures Research and Development, Cer. Engr. and Sci. Proc., V 1, 7–8, 1980, 491–494.Google Scholar
  3. 3.
    Crivelli-Visconti, and Cooper, G.A.: Mechanical Properties of a New Carbon Fiber Material, Nature, 221, 1969, 754–755.CrossRefGoogle Scholar
  4. 4.
    Sambell, R.A., Bowen, D., and Phillips, D.C.: Carbon Fiber Composites with Ceramic and Glass Matrices Part 1 Discontinuous Fibers, J. Mat. Sci., 7, 1972, 663–675.CrossRefGoogle Scholar
  5. 5.
    Sambell, et al: Carbon Fiber Composites with Ceramic and Glass Matrices Part 2. Continuous Fibers, ibid., 676–681.Google Scholar
  6. 6.
    Phillips, D.C., Sambell, R.A., and Bowen, D.H.: The Mechanical Properties of Carbon Fiber Reinforced Pyrex, ibid., 1454–1464.Google Scholar
  7. 7.
    Phillips, D.C.: Interfacial Bonding and Toughness of Carbon Fiber Reinforced Glass and Glass-Ceramics. ibid., 9, 1974, 1847–1954.Google Scholar
  8. 8.
    Levitt, S.R.: High Strength Graphite Fiber-LAS, ibid., 8, 1973, 793–806.Google Scholar
  9. 9.
    Brennan, J.J..: Increasing the Impact Strength of Si3N4 Through Fibre Reinforcement. Special Ceramics 6, edited by P. Popper, BCRA, McCorquodale Printers, Manchester, England, 1975, 123–134.Google Scholar
  10. 10.
    Matson, L.E., and Hay, R.S.: Stability of a Sapphire/Yttrium Aluminum Garnet Composite System, ibid, [10], 7–8, 1989, 764.Google Scholar
  11. 11.
    Foulds, W., LeCostaouec, J.F., Landry, C., and DiPietto, S.: Tough Silicon Nitride Matrix Comoosites Using Textron Silicon Carbide Monofilaments, ibid., [10], 9–10, 1989, 1083–1099.Google Scholar
  12. 12.
    Holmes, J. W., Kotil, T. and Foulds, W.: High-Temperature Fatigue of SiC Fiber-Reinforced Si 3 H 4 Ceramic Composites, Symp. of High-Temperature Composites, Am. Soc. for Comp., 1989, 176–182.Google Scholar
  13. 13.
    Bhatt, R.T.: Mechanical Properties of SiC Fiber-Reinforced Reaction Bonded Si 3 N 4 Composites, Mat. Sci. Res., Vol. 20, Tailoring Multiphase and Composite Ceramics, Plenum Press, NY (1986) 675–686.Google Scholar
  14. 14.
    Bhatt, R.T., and Kiser, J.D.: Matrix Density Effects on the Mechanical Properties of SiC Fiber-Reinforced Silicon Nitride Matrix Properties, Ceram. Engr. Sci. Proc. 11 [7–8], 1990, 974–994.CrossRefGoogle Scholar
  15. 15.
    Lundberg, R., Pompe, R., and Carlsson, R.: Fibre Reinforced smcon Nitride Composites, Compo Sci. and Tech. 37, 1990, 165–176.CrossRefGoogle Scholar
  16. 16.
    Yamamura, T., Ishikawa, T., Sato, M., Shibuya, M., Ohtsubo, H., Nagasawa, T., and Okamura, K.: Characteristics of a Ceramic Matrix Composite using a Continuous Si-Ti-C-O Fiber, Ceram. Engr. Sci. Proc., [11]. 9–10, 1990, 1648–1660.CrossRefGoogle Scholar
  17. 17.
    Fitzer, E. and Gadow, R.: Fiber Reinforced Composites via the Sol/Gel Route, Materials Sci. Res., Vol. 20, Plenum Press, NY (1986) 571–608.Google Scholar
  18. 18.
    Fitzer, E.: Fiber-Reinforced Ceramics, Whisker and Fiber Toughened Ceramics Conf. Proc. ASM Intl., 1988, 165–192.Google Scholar
  19. 19.
    Hyde, A.R.: Fibre Reinforced Glass and Ceramic Composites. GEC Journal of Research, V. 6, #1, 1988, 44–49.Google Scholar
  20. 20.
    Mah. T., Yu, Y.F., Hermes, E.E., and Mazdiyazni, K.S.: Ceramic Fiber Reinforced Metal-Organic Precursor Matrix Composites, Chapter 10 in Fiber Reinforced Ceramic Composites, edited by K. S. Mazdiyasni, Noyes Publications, Park Ridge, NJ., 1990.Google Scholar
  21. 21.
    Hurwitz, F.I., Gyekenyesi, J.Z., Conroy, P.J., and Rivera, A.L.: NICALON/Siliconoxycarbide Ceramic Composites, Ceram. Engr. Sci. Proc., 11, [7–8], 1990, 931–946.CrossRefGoogle Scholar
  22. 22.
    Strife, J.R., Brennan, J.J., and Prewo, K.M.: Status of Continuous Fiber-Reinforced Ceramic Matrix Composite Processing Technology, ibid., 11, {7–8}, 1990, 871–919.Google Scholar
  23. 23.
    Ichikawa, H., Mitsuno, S., Imai, Y., and Ishikawa, T.: Mechanical and Electrical Pro.perties of SiC Fiber (NICALON) and Their Composites, Proc. of the First Japan Int. SAMPE Symp., 1989, 923–928.Google Scholar
  24. 24.
    Newkirk, M.S., Lesher, H.D., White, D.R., Kennedy, C.R., Urquhart, A.W., and Claar, T.D.: Preparation of Lanxide Ceramic Matrix Composites: Matrix Formation by the Directed Oxidation of Molten Metals, Cer. Engr. Sci. Proc., [8], 7–8, 1987, 879–885.CrossRefGoogle Scholar
  25. 25.
    Newkirk, M.S., Urquhart, A.W., Zwicker, H.R., and Breval, E.: Formation of Lanxide Ceramic Composite Materials, J. Mat. Sci., [1], 1986, 81–89.Google Scholar
  26. 26.
    Antolin, P.B., Schiroky, G.H., and Andersson, C.A.: Properties of Fiber-Reinforced Alumina Matrix Composites, Cer. Engr. Sci. Proc., [9], 7-8, 1988, 759–766.CrossRefGoogle Scholar
  27. 27.
    Fareed, A.S., Sonuparlak, B., Lee, C.T., Fortini, A.J., and Schirocky, G.: Mechanical Properties of 2D NICALON Fiber-Reinforced Lanxide Al 2 O 3 and AlN Matrix Composites, ibid., [11], 7–8, 1990, 782–794.Google Scholar
  28. 28.
    Prewo, K.M. and Brennan, J.J.: High Strength Silicon Carbide Fiber-Reinforced Glass Matrix Composites, J. Mat. Sci. 15 (1980) 463–468.CrossRefGoogle Scholar
  29. 29.
    Prewo, K.M. and Brennan, J.J.: Silicon Carbide Yarn Reinforced Glass Matrix Composites, J. Mat. Sci. 17 (1982) 1201–1206.CrossRefGoogle Scholar
  30. 30.
    Brennan, J. J. and Prewo, K.M.: Silicon Carbide Fiber Reinforced Glass-Ceramic Matrix Composites Exhibiting High Strength and Toughness, J. Mat. Sci. 17 (1982) 2371–2383.CrossRefGoogle Scholar
  31. 31.
    Brennan, J.J.: Interfacial Characterization of Glass and Glass-Ceramic MatrixLNicalon SiC Fiber Composites, Proc. of the Conf. on Tailoring Multiphase and Composite Ceramics, Penn St. Univ. (July 1985). Materials Science Research Vol 20, Plenum Press, New York (1986) 549–560.Google Scholar
  32. 32.
    Minford, E.J. and Prewo, K.M.: Fatigue Behavior of SiC Fiber Reinforced LAS Glass-Ceramic, ibid., 561–570.Google Scholar
  33. 33.
    Prewo, K.M., Brennan, J.J. and Layden, G.K.: Fiber Reinforced Glasses and Glass-Ceramics for High Performance Applications, Am. Cer. Soc. Bull. Vol. 65, No.2 (Feb. 1986).Google Scholar
  34. 34.
    Prewo, K.M.: Tension and Flexural Strength of Silicon Carbide Fiber-ReinfOrced Glass-Ceramics, J. Mat. Sci., 21, 1986, 3590–3600.CrossRefGoogle Scholar
  35. 35.
    Prewo, K.M.: Fatigue and Stress Rupture of Silicon Carbide Fiber-Reinforced Glass-Ceramics, ibid., 22,1987, 2695–2701.Google Scholar
  36. 36.
    Brennan, I.I.: Interfacial Chemistty and Bonding in Fiber Reinforced Glass and Glass-Ceramic Matrix Composites, Proc. of the Conf. on Ceramic Microstructures α86: Role of Interfaces, Univ of Calif, Berkeley (July 1986) Materials Science Res Vol. 21, Plenum Press, NY (1987) 387–400.Google Scholar
  37. 37.
    Mah, T., Mendiratta, M.G., Katz, A.P., Rub, R. and Mazdiyasni, K.S.: Room Temperature Mechanical Behavior of Fiber-Reinforced Ceramic-Matrix Composites, J. Am. Cer. Soc. 68 [1] (1985) C–27–30.CrossRefGoogle Scholar
  38. 38.
    Cooper, R.F. and Chyung, K.: Structure and Chemistty of Fibre-Matrix Interfaces in SiC Fibre-Reinforced Glass-Ceramic Composites: An Electron Microscopy Study, J. Mat Sci. 22 (1987) 3148–3160.CrossRefGoogle Scholar
  39. 39.
    Brennan, J.J.: Interfacial Characteristics of Glass-Ceramic Matrix/SiC Fiber Composites, Journal de Physique, Colloque C5, supplement au n° 10, Tome 49, Oct. 1988, 791–809.Google Scholar
  40. 40.
    Michalske, T.A., and Hellman, I.R.: Strength and Tougbness of Continuous Alumina-Fiber-Reinforced Glass-Matrix Composites, J. Am. Cer. Soc., 71 [9] 1988, 725–731.CrossRefGoogle Scholar
  41. 41.
    Cho, K., Kerans, R.I., and Jepsen, K.A.: Selection Fabrication, and Failure Behavior of SiC Monofilament-Reinforced Glass Composites, Cer. Engr. Sci. Proc., [9], 7–8, 1988, 815–824.CrossRefGoogle Scholar
  42. 42.
    Lankford, J.: Strength of Monolithic and Fiber-Reinforced Glass-Ceramics at High Rates of Loading and Elevated Temperature. ibid., 843–852.Google Scholar
  43. 43.
    Kim, R.Y., and Katz, A.P.: Mechanical Behavior of Unidirectional SiC/BMAS Ceramic Composites, ibid., 853–860.Google Scholar
  44. 44.
    Murthy, V.S.R., Jie, L., and Lewis, M.H.: Interfacial Microstructure and Crystallization in SiC-Glass Ceramic Composites, ibid., [10], 7–8, 1989, 938–954.Google Scholar
  45. 45.
    Pannhorst, W., Spallek, M., Bruckner, R., Hegeler, H., Reich, C., Grathwohl, G., Meier, B., and Spelmann, D.: Fiber-Reinforced Glasses and Glass-Ceramics Fabricated by a Novel Process, ibid., [11], 7-8, 1990, 947–963.Google Scholar
  46. 46.
    Parlier, M., Ritti, M.H., Stohr, I.F., and Vignesoult, S.: Silicon Carbide Fibre-Reinforced Glass-Ceramic Matrix Composites: A High Temperature Material for High Performance Application, Proc. of ICAS 90, Stockholm, Sweden, Sept. 9-14, 1990.Google Scholar
  47. 47.
    Hegeler, H., and Bruckner, R.: Fibre-Reinforced Glasses’: Influence of Thermal Expansion of the Glass Matrix on Strength and Fracture Toughness of the Composites. J. Mat. Sci., [25], 1990, 4836–4846.CrossRefGoogle Scholar
  48. 48.
    Phillips, D.C., Park, N., and Lee, R.I.: The Impact Behavior of High Performance, Ceramic Matrix Fibre Composites, Comp. Sci. & Tech., [37], 1990, 249–265.CrossRefGoogle Scholar
  49. 49.
    Homeny, J., VanValzah, I.R., and Kelley, M.A.: Interfacial Characterization of Silicon Carbide Fiber/Lithia-Alumina-Silica Glass Matrix Composites. J. Am. Cer. Soc. 73 [7], 1990, 2054–59.CrossRefGoogle Scholar
  50. 50.
    Ponthieu, C., Lancin, M., Thibault-Desseaux, J., and Vignesoult, S.: Microstructure of Interfaces in SiC/Glass Composites of Different Tenacity, Colloque de Physique, C1, Supplement au n°1, Tome 51, Janvier 1990, 1021–1026.Google Scholar
  51. 51.
    Laube, B.L., and Brennan, J. J.: Scanning Auger Electron SpectroscQPY Qf the Fiber/Matrix Interface of SiC Fiber/Silicate Glass Matrix Composites, J. Vac. Sci. Tech. A 81 (3) May/June 1990, 2096–2100.CrossRefGoogle Scholar
  52. 52.
    Brennan, J. J.: Glass and Glass-Ceramic Matrix Composites, Chapter 8 in Fiber Reinforced Ceramic Composites, edited by K. S. Mazdiyasni, Noyes Publications, Park Ridge, NJ, 1990.Google Scholar
  53. 53.
    Bonney, L.A., and Cooper, R.F.: Reaction-Layer Interfaces in SiC-Fiber-Reinforced Glass-Ceramics’ A High-Resolution SCanning Transmission Electron Microscopy Analysis, J. Am. Cer. Soc., 73 [10] (1990) 2916–21.CrossRefGoogle Scholar
  54. 54.
    Prewo, K.M., Johnson, B., and Starrett, S.: Silicon Carbide Fibre Reinforced Glass-Ceramic Comoosite Behavior at Elevated Temperature, J. Mat Sci., 24, 1989, 1373–1379.CrossRefGoogle Scholar
  55. 55.
    Naslain, R. and Langlais, F.: CYI-Processing of Ceramic-Ceramic Composite Materials Conf on Tailoring Multiphase and Composite Ceramics, Penn St. Univ. (July 1985) Plenum Press, NY, 145–164.Google Scholar
  56. 56.
    Lamicq, P.J., Bernhart, G.A., Dauchier, M.M., and Mace, J.G.: SiC/SiC composite Ceramics, Am. Cer. Soc. Bull., 65 [2] 1986, 336–338.Google Scholar
  57. 57.
    Caputo, A.J. and Lackey, W.J.: Fabrication of Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration, Cer. Eng. Sci. Proc. 5 [7–8] (1984) 654–67.CrossRefGoogle Scholar
  58. 58.
    Caputo, A.J., Lackey, W.J. and Stinton, D.P.: Development of a New, Faster Process for the Fabrication of Ceramic Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration, ibid 6 [7–8] (1985) 694–706Google Scholar
  59. 59.
    Stinton, D.P., Caputo, A.J. and Lowden, R.A.: Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration, ibid, 347–50.Google Scholar
  60. 60.
    Caputo, A.J., Stinton, D.P., Lowden, R.A. and Besmann, T.M.: Fiber-Reinforced SiC Composites with Improved Mechanical Properties, Am. Cer. Soc. Bull. 66 [2] (1987) 368–72.Google Scholar
  61. 61.
    Stinton, D.P., Besmann, T.M. and Lowden, R.A.: Advanced Ceramics by Chemical Vapor Deposition Techniques, Am. Cer. Soc. Bull. 67 [2] (1988) 350–356.Google Scholar
  62. 62.
    DuPont Company Preliminary Engineering Data, Wilmington, DE, 1989.Google Scholar
  63. 63.
    Brennan, J. J.: Interfacial Studies of Chemical-vapor-infiltrated Ceramic Matrix Composites, Matls. Sci. and Engr., A126, 1990, 203–223.CrossRefGoogle Scholar
  64. 64.
    Frety, N., and Boussuge, M.: Relationship Between High-Temperature Development of Fibre-Matrix Interfaces and the Mechanical Behavior of SiC-SiC Composites, Comp. Sci. and Tech., 0266–3538, 1989, 177–189.Google Scholar
  65. 65.
    SEP Literature, Solid Propulsion and Composites Division, France, 1989.Google Scholar
  66. 66.
    DuPont Brochure on Ceramic Matrix Composites, DuPont Advanced Composites, Newark, DE, 1991.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • John J. Brennan
    • 1
  • James R. Strife
    • 1
  • Karl M. Prewo
    • 1
  1. 1.United Technologies Research CenterEast HartfordUSA

Personalised recommendations