Fabrication and Characterization of Slip-Cast Layered Al2O3-ZrO2 Composites

  • Raymond A. Cutler
  • Charla B. Brinkpeter
  • Anil V. Virkar
  • Dinesh K. Shetty


Monolithic and three-layered Al2O3-15 vol. % ZrO2 composites were fabricated by slip casting aqueous slurries. The outer and inner layers of three-layer composites contained unstabilized and partially stabilized ZrO2, respectively. Transformation of part of the unstabilized ZrO2 led to surface compressive stresses in the outer layers. Strain gage, xray, indentation crack length, and strength measurements were used to determine the magnitude of residual stresses in the composites. The strength of the three-layer composites (1.1 to 1.2 GPa) was 500–700 MPa higher than that of the monolithic outer layer composites at room temperature and 350 MPa higher at 750°C. The strength differential decreased rapidly above the monoclinic to tetragonal transformation temperature. Three-layered composites showed higher Weibull modulus and excellent damage resistance. Cam follower rollers were fabricated to demonstrate the applicability of this technique for making automotive components.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans, A. O. and Cannon, R. M., Toughening of Brittle Solids by Martensitic Transformations. Acta Metall., 1986, 34, 761–800.CrossRefGoogle Scholar
  2. 2.
    Swain, M. V., Grinding-Induced Tempering of Ceramics Containing Metastable Zirconia. J. Mater. Sci. Lett., 1980, 15, 1577–79.CrossRefGoogle Scholar
  3. 3.
    Green, D. J., A Technique for Introducing Surface Compression into Zirconia Ceramics. J. Am. Ceram. Soc., 1983, 66[9], C–178–C–179.Google Scholar
  4. 4.
    Virkar, A. V., Huang, J. L. and Cutler, R. A., Strengthening of Oxide Ceramics by Transformation Induced Stresses. J. Am. Ceram. Soc., 1987, 70[3], 164–70.CrossRefGoogle Scholar
  5. 5.
    Cutler, R. A., Hansen, J. L., Virkar, A. V., Shetty, D. K. and Winterton, R. C., Strength Improvement in Transformation Toughened Ceramics using Compressive Residual Surface Stresses. In Advanced Structural Ceramics Vol. 78, ed. by P.F. Becher, M. V. Swain, and S. Somiya, Materials Research Society, Pittsburgh, PA, 1987, pp. 155–63.Google Scholar
  6. 6.
    Cutler, R. A, Bright, J. D., Virkar, A. V. and Shetty, D. K. Strength Improvement in Transformation-Toughened Alumina by Selective Phase Transformation. J. Am. Ceram. Soc., 1987, 70[10], 713–18.Google Scholar
  7. 7.
    Hansen, J. J., Cutler, R. A., Shetty D. K. and Virkar A. V., Indentation Fracture Response and Damage Resistance of Al2O3-ZrO2 Composites Strengthened by Transformation-Induced Residual Stresses. J. Am. Ceram. Soc.,. 1988, 71[12], C–501–5.Google Scholar
  8. 8.
    Virkar, A. V., Jue, J. F., Hansen, J. J. and Cutler, R. A, Measurement of Residual Stresses in Oxide-ZrO2 Three-Layer Composites. J. Am. Ceram. Soc.. 1988, 71[3], C–148–51.Google Scholar
  9. 9.
    A. V. Virkar, “Determination of Residual Stress Profile Using a Strain Gage Technique,” J. Am. Ceram. Soc., 73[7] 2100–02 (1990).CrossRefGoogle Scholar
  10. 10.
    Cutler, R. A, Brinkpeter, C. B., Bruner, S. L., Prouse, D. W., Virkar, A. V., and Shetty, D. K., Transformation-Toughened Ceramics with Strength Retention to High Temperatures. In Proc. 27th Automotive Tech. CCM, SAE, Warrendale, PA, 1990, pp. 155–63.Google Scholar
  11. 11.
    Hasselman, D. P. H., Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics. J. Am. Ceram. Soc.. 1969, 52[11] 600–04.CrossRefGoogle Scholar
  12. 12.
    Hasselman, D. P. H., Figures of Merit for the Thermal Stress Resistance of High-Temperature Brittle Materials. Ceramurgia Int., 1979, 4[4] 147–50.Google Scholar
  13. 13.
    Becher, P. F., Lewis, D., Carman, K. R. and Gonzalez, A. G., Thermal Shock Resistance of Ceramics: Size and Geometry Effects in Quench Tests. Am. Ceram. Soc. Bull., 1980, 59[5] 542–48.Google Scholar
  14. 14.
    Becher, P. F., Transient Thermal Stress Behavior in ZrO2-Toughened Al2O3. J. Am. Ceram. Soc.. 1981, 64[1], C–37–9.Google Scholar
  15. 15.
    Becher, P. F., Effect of Water Bath Temperature on the Thermal Shock of Al2O3. J. Am. Ceram. Soc.. 1981, 64[1], C–17–18.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • Raymond A. Cutler
    • 1
  • Charla B. Brinkpeter
    • 1
  • Anil V. Virkar
    • 2
  • Dinesh K. Shetty
    • 2
  1. 1.Ceramatec, Inc.Salt Lake CityUSA
  2. 2.University of UtahSalt Lake CityUSA

Personalised recommendations