CMZP — A New High Temperature Thermal Barrier Material

  • D. A. Hirschfeld
  • D. M. Liu
  • J. J. Brown


New (Ca1-x,Mgx)Zr4(PO4)6 ceramics in the ultra low expansion NZP family not only have near zero thermal expansion but also have thermal conductivities lower than those of conventional thermal barrier materials such as ZrO2. In addition, CMZP is less dense than ZrO2 with a theoretical density of approximately 3.2 gm/cm3 versus 5.8 gm/cm3. Techniques have been developed to fabricate lightweight ceramics with both open and closed pore structures with relative densities ranging from 0.2 to 0.8. The tensile, compressive, and flexure strengths are shown to compare favorably with those of ZrO2. Furthermore, no strength loss following air quenching from temperatures up to 1500°C was observed indicative of good thermal shock resistance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.Y. Limaye, D.K. Agrawal, and H.A. McKinstry, “Synthesis and Thermal Expansion of MZR4P6O24 (M=Mg,Ca,Sr,Ba)”, J. Am. Ceram. Soc., 70 [10] C232–C236(1987).CrossRefGoogle Scholar
  2. 2.
    G.E. Lenain, H.A. McKinstry, S.Y. Limaye, and A. Woodward, “Low Thermal Expansion of Alkali—Zirconium Phosphates”, Mat. Res. Bull., 19 1451–56(1984).CrossRefGoogle Scholar
  3. 3.
    G.E. Lenain, H.A. McKinstry, J. Alamo, and D. K. Agrawal, “Structural Model for Thermal EXpansion in MZr2P3O12 (M=Li,Na,K,Rb,Cs)”, J.Mat.Sci., 22[1] 17–22(1987).CrossRefGoogle Scholar
  4. 4.
    J. Alamo and R. Roy. “Crystal Chemistry of the NaZr2(PO4)3, NZP or CTP, Structure Family”, J. Mat. Sci., 21 444–50(1986).Google Scholar
  5. 5.
    L.O. Hagman and P. Kierkegaard, “The Crystal Structure of NaMiv 2(PO4)3, MIV = Ge,Ti,Zr”, Acta. Chem Scand, 22 1822–89(1986).CrossRefGoogle Scholar
  6. 6.
    J. B. Goodenough, H.Y.-P. Hong, and J. A. Kafalas, “Fast Na+—Ion Transport in Skeleton Structures”, Mat.Res.Bull., 11 203–06(1976).CrossRefGoogle Scholar
  7. 7.
    S. Van Aken, “Synthesis and Thermal Characterization of (Mgx, Ca1-x)Zr4(PO4)6,” M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1990.Google Scholar
  8. 8.
    D.P.H. Hassellman, L.F. Johnson, L.D. Bentsen, R. Syed, H.L. Lee, and M.V. Swain, “Thermal Diffusivity and Conductivity of Dense Polycrystalline ZrO2 Ceramics: A Survey”, Am. Ceram. Soc. Bull., 66[5] 799–806.Google Scholar
  9. 9.
    F.F. Lange, and K. T. Miller, “Open-Cell, Low-Density Ceramics Fabricated from Reticulated Polymer Substrates”, Adv. Ceram. Mat., 2[4] 827–31(1987).Google Scholar
  10. 10.
    E. Ryshkewitch, “Compressive Strength of Porous Sintered Alumina and Zirconia” J. Am. Ceram. Soc., 36[2] 65–68(1953).CrossRefGoogle Scholar
  11. 11.
    D. J. Green, “Fabrication and Mechanical Ptoperties of Lightweight Ceramics Ptoduced by Sinter of Hollow Spheres”, J. Am. Ceram. Soc., 68[7] 403–09(1988).Google Scholar
  12. 12.
    D.M. Liu, “The Development and Characterization of Lightweight CMZP Ceramics”, M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1991.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • D. A. Hirschfeld
    • 1
  • D. M. Liu
    • 1
  • J. J. Brown
    • 1
  1. 1.CIT Center for Advanced Ceramic MaterialsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations