Surface Acid-Base, and Electrokinetic Properties of Si3N4, ZrO2, Al2O3, Y2O3, and TiO2 Powders

  • Alf B. A. Pettersson
  • Hedvig Byman-Fagerholm
  • Jarl B. Rosenholm


The surface acid-base properties of Si3N4, ZrO2, Al2O3, Y2O3, and TiO2 powders have been estimated by the nonaqueous titration method using a series of Hammet indicators, and correlated with electrophoretic measurements. All powders are components in slips for different casted ceramics. Pure and yttrium stabilized zirconia as well as rutile and anatase forms of titania were analyzed. The results show good correlation between the rank orders of the iso electric points (IEP:s) and the acid-base properties of the powder surfaces studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Persson M., “Slip Casting and Pressing of Ceramics based on Colloidal Processing Techniques”, Thesis, Chalmers University of Technology, Göteborg, Sweden, (1989).Google Scholar
  2. 2.
    Peuckert D., Hausselt J., and Kriechbaum G. W., Proc. International Symposium on Ceramic Materials & Components for Engines, Las Vegas, (1988).Google Scholar
  3. 3.
    Wohlfromm H., Pena P., Moya J. S., and Requena J., Proc. 7th Cimtec-World Ceramic Congress, Montecatini, Italy, June (1990).Google Scholar
  4. 4.
    Rehnfeld G., Staudt Th., and Zografou D., Proc. 1st International Conference on Ceramic Powder Processing Science, Volume 2, Orlando, (1987).Google Scholar
  5. 5.
    Johnson O., J. Phys. Chem., 59, 827, (1955).CrossRefGoogle Scholar
  6. 6.
    Benesi H. A., J Phys. Chem., 61, 970, (1957).CrossRefGoogle Scholar
  7. 7.
    Yamanaka T., Tanabe K., J. Phys. Chem., 79, 2409, (1975).CrossRefGoogle Scholar
  8. 8.
    Yamanaka T., Tanabe K., J. Phys. Chem., 80, 1723, (1976).CrossRefGoogle Scholar
  9. 9.
    Tanabe K., “Solid Acids and Bases”, Academic Press, New York, (1970).Google Scholar
  10. 10.
    Tanabe K., in Anderson J. R., Boudart M. (eds), “Catalysis — Science and Technology”, Volume 2, Springer-Verlag, Heidelberg, pp. 231–273, (1981).Google Scholar
  11. 11.
    Benesi H. A., Winquist B. H. C, Adv. Catal., Volume 27, pp. 97–182, (1978).CrossRefGoogle Scholar
  12. 12.
    Hodgkin J. H., Hawthorne D. G., Swift J. D., Solomon D. H., Commonwealth Scientific and Industrial Research Organization, U.S. Patent 3,834,923, (September 10, 1974)Google Scholar
  13. 13.
    Bergström L., Bostedt E., Colloids and Surfaces, 49, 183, (1990).CrossRefGoogle Scholar
  14. 14.
    Bergström L., Pugh R. J., J. Am. Ceram. Soc., 72, 103, (1989).CrossRefGoogle Scholar
  15. 15.
    Solomon D. H., Hawthorne D. G., “Chemistry of Pigments and Fillers”, John Wiley & Sons, New York, (1983).Google Scholar
  16. 16.
    Jones P., Hockey J. A., J. Chem. Soc. Faraday Trans. I, 67, 2679, (1971).CrossRefGoogle Scholar
  17. 17.
    DeLiso E. M., van Rijswijk W., Cannon W. R., Colloids and Surfaces, 53, 383, (1991).CrossRefGoogle Scholar
  18. 18.
    Hiemenz P. C., “Principles of Colloid and Surface Chemistry”, Marcel Dekker Inc., New York, (1986).Google Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • Alf B. A. Pettersson
    • 1
  • Hedvig Byman-Fagerholm
    • 1
    • 2
  • Jarl B. Rosenholm
    • 1
  1. 1.Department of Physical ChemistryÅbo Akademi UniversityÅboFinland
  2. 2.Swedish Ceramic InstituteGöteborgSweden

Personalised recommendations