Fabrication and Testing of Corrosion Resistant Coatings

  • D. P. Stinton
  • J. C. Mclaughlin
  • L. Riester


The susceptibility of SiC and Si3N4 to sodium corrosion mandates that corrosion resistant coatings be developed to protect silicon-based turbine engine components. Materials with good corrosion resistance and thermal expansions that nearly match SiC and Si3N4 have been identified. Corrosion testing of hot-pressed pellets of these compounds has identified the most promising materials. Development of chemical vapor deposition systems to apply these materials has been initiated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L Smialek and N. S. Jacobson, Mechanism of Strength Degradation for Hot Corrosion of α-SiC. J. Am. Ceram. Soc., 1986,69(10), 741–52.CrossRefGoogle Scholar
  2. 2.
    N. S. Jacobson and D. S. Fox, Molten-Salt Corrosion of Silicon Nitride: 11, Sodium Sulfate. J. Am. Ceram. Soc., 1988, 71(2), 128–48.CrossRefGoogle Scholar
  3. 3.
    N. S. Jacobson, J. L Smialek, and D. S. Fox, Molten Salt Corrosion of SiC and Si3N4 In Handbook ofCeramics and Composites, Vo1.1: Synthesis and Properties, ed. N. P. Cheremisinoff, Marcel Dekker, Inc. New York, 1990, pp. 99–136.Google Scholar
  4. 4.
    J.I. Federer, Corrosion of SiC Ceramics by Na2SO4 Adv. Ceram. Mater., 1988,3(1), 56–61.Google Scholar
  5. 5.
    J. A. Costello and R. E. Tressler, Oxidation Kinetics of Hot-Pressed and Sintered α-SiC. J. Am. Ceram. Soc., 1981,64,327–31.CrossRefGoogle Scholar
  6. 6.
    N. S. Jacobson and J. L Smialek, Hot Corrosion of Sintered α-SiC at 1000°C. J. Am. Ceram. Soc., 1985, 68, 432–39.CrossRefGoogle Scholar
  7. 7.
    N. S. Jacobson, C. A. Stearns, and J. L Smialek, Burner Rig Corrosion of SiC at 1000°C. Adv. Ceram. Mater., 1986, 1, 154–61Google Scholar
  8. 8.
    E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase Diagrams for Ceramists, Vol. I, The American Ceramic Society, Westerville, OH 1964, p.94.Google Scholar
  9. 9.
    V. K. Sarin, Design Criteria for a Coating to Reduce Contact Stress Damage. In Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop, Castine, ME, July 27-30, 1987, U.S. Department of Energy Report, Conf-870762, Page III–83.Google Scholar
  10. 10.
    H. E. Rebenne and V. K. Sarin, Ceramic Coatings to Reduce Contact Stress Damage of Ceramics: Thermodynamic Modeling. In Proc. 25th Automotive Technology Development Contractors’ Coordination Meeting, Society of Automotive Engineers, Inc. Warrendale, Penn., 1988, P-209, pp. 199–206.Google Scholar
  11. 11.
    H. E. Rebenne and J. H. Selverian, Adherent Ceramic Coatings To Reduce Contact Stress Damage of Ceramics. In Proc. of the Annual Automotive Technology Development Contractors’Coordination Meeting, Society of Automotive Engineers, Inc. Warrendale, Penn., 1991, P-243, pp. 227–38.Google Scholar
  12. 12.
    M. A. Alvin, D. M. Bachovchin, J. E. Lane, and R. E. Tressler, Degradation of Cross Flow Filter Material. In Proc. of the Seventh Annual Coal-Fueled Heat Engines and Gas Stream Cleanup Systems Contractors Review Meeting, Report No. DOE/METC-90/6110, ed. H. A. Webb, et al., U. S. Department of Energy, Morgantown, W.Va., 1990, pp. 162–Google Scholar
  13. 13.
    I. Y. Glatter, D. J. Treacy, J. E. Sheehan, and K. S. Mazdiyasni, High-Temperature Chemical Behavior of a Multi-Layered Oxidation Protection Coating System for Carbon-Carbon Composites, Wright Research Development Center Report No. WRDC-TR-89-4127,1989.Google Scholar
  14. 14.
    R. Ruh, et. al., Phase Relations and Thermal Expansion in the System HfO2-TiO2. J. Am. Ceram. Soc., 1976,59(11-12) 495–99.CrossRefGoogle Scholar
  15. 15.
    K. S. Mazdiyasni and L. M. Brown, Preparation and Characterization of High-Purity HfTiO4. J. Am. Ceram. Soc., 1970,53(11),585–89.CrossRefGoogle Scholar
  16. 16.
    E. M. Levin and H. F. McMurdie, Phase Diagrams for Ceramists, 1975 Supplement, The American Ceramic Society, WesterviIle, OH, 1964, p. 169.Google Scholar
  17. 17.
    T. Takahashi and H. Itoh, Formation of Tantalum Oxide by Chemical Vapor Deposition. J. of Less-Common Metals, 1972,38, 211–19.CrossRefGoogle Scholar
  18. 18.
    E. Kaplan, M. Balog, and D. Frohman-Bentchkowsky, Chemical Vapor Deposition of Tantalum Pentoxide Films for Metal-Insulator-Semiconductor Devices. J. Electrochem. Soc.: Solid-State Science and Technology, 1976, 123(10) 1570–73.CrossRefGoogle Scholar
  19. 19.
    E. M. Levin and H. F. McMurdie, Phase Diagrams for Ceramists, 1975 Supplement, The American Ceramic Society, WesterviIle, OH, 1964, p. 92.Google Scholar
  20. 20.
    E. Parsons, Morgantown Energy Technology Center, Morgantown, WV., personal communication to D. P. Stinton, August 1990.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd and MPA Stuttgart 1992

Authors and Affiliations

  • D. P. Stinton
    • 1
  • J. C. Mclaughlin
    • 1
  • L. Riester
    • 1
  1. 1.Oak Ridge National LaboratoryTennesseeUSA

Personalised recommendations