Skip to main content

Physical behaviour of polymeric foams — an overview

  • Chapter
Low density cellular plastics

Abstract

Over the last decade, the markets for low-density cellular plastics increased considerably, the major product sectors being domestic, automotive, aerospace and industrial. Applications include comfort cushioning, thermal insulation and energy management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hilyard, N. C., and Young, J. (1982) Introduction, in Mechanics of Cellular Plastics, (Ed. N. C. Hilyard), Applied Science Publishers, London, Ch. 1.

    Google Scholar 

  2. Matze, E. B. (1946) The three-dimensional shape of bubbles in foam — analysis of the role of surface forces in three dimensional cell shape determination. J. Botany, 33, 58–80.

    Article  Google Scholar 

  3. Marvin, J. W. (1939a) The shape of compressed lead shot and its relation to cell shape. Am. J. Botany, 26, 280–8.

    Article  Google Scholar 

  4. Marvin, J. W. (1939b) Cell shape studies in the pith of Euratorium Purpureum. Am. J. Botany, 26, 487–504.

    Article  Google Scholar 

  5. Williams, R. E. (1964) Space filling polyhedron: Its relation to aggregates of bubbles, plant cells and metal crystallites. Science, 161, 276–7.

    Article  Google Scholar 

  6. Cunningham, A. (1987) A structural model of heat transfer through rigid Polyurethane foam, in Heat and Mass Transfer (eds J. Bougard and N. H. Afgan), Hemisphere Publishing Corporation, pp. 32–43.

    Google Scholar 

  7. Najima, S., Kato, K., Ono, M. and Askida, T. (1992) Time resolved SAXS study of morphological change in a binary blend of poly ε-kaprolactone and polystyrene oligomer. Macromolecules, 25, 1922–8.

    Article  Google Scholar 

  8. Hilyard, N. C., Lee, W. L. and Cunningham, A. (1991) Energy dissipation in Polyurethane cushion foams and its role in dynamic ride comfort. Proc. Cellular Polymers-Forum Hotel. London. UK, 2022 March 1991. RAPRA Technology Ltd, 187–91.

    Google Scholar 

  9. Norton, F. J. (1967) Thermal conductivity and life of polymeric foams. J. Cellular Plast., 3, 23–36.

    Article  CAS  Google Scholar 

  10. Cuddihy, E. F. and Moacanin, J. (1967) Diffusion of gases in polymeric foams. J. Cellular Plast., 3, 73–80.

    Article  CAS  Google Scholar 

  11. Shuetz, M.A. and Glicksman, L. R. (1984) A basic study of heat transfer through foam insulation. J. Cellular Plast., 20(2), 114–21.

    Article  Google Scholar 

  12. Valenzuela, J. A. and Glicksman, L. R. (1981) Thermal resistance and aging of rigid urethane foam insulation. Proc. DOE-ONRL Workshop on Mathematical Modeling of Roofs, Conf 811. Nov. 79–261.

    Google Scholar 

  13. Cunningham, A. and Sparrow, D. J. (1986) Rigid polyurethane foam: What makes it the most effective insulant? Cellular Polymers, 5, 327–42.

    CAS  Google Scholar 

  14. Gibson, L. J. and Ashby, M. F. (1988) Cellular Solids-Structure and Properties, Pergamon Press, Ch. 5.

    Google Scholar 

  15. Menges, G. and Knipschild, F. (1982) Stiffness and strength-rigid plastic foams in Mechanics of Cellular Plastics (ed. N. C. Hilyard), Applied Science Publishers, London, Ch. 2A.

    Google Scholar 

  16. Rusch, K. C. (1969) Load-compression behaviour of flexible foams. J. Appl. Polym. Sci., 13, 2297–311.

    Article  CAS  Google Scholar 

  17. Gent, A. N. and Thomas, A. G. (1963) Mechanics of foamed elastic materials. Rubber Chem. Tech., 36, 597–602.

    Article  CAS  Google Scholar 

  18. Lederman, J. M. (1971) Prediction of the tensile properties of flexible foams. J. Appl. Polym. Sci., 15, 693–703.

    Article  CAS  Google Scholar 

  19. Hilyard, N. C. (1982) Mechanics of cellular Plastics (ed. N. C. Hilyard), Applied Science Publishers, London, 80–81.

    Google Scholar 

  20. Warren, W. E. and Kraynik, A. M. (1988) The linear elastic properties of open-cell foams. J. Appl. Mech, 55, 341–6.

    Article  Google Scholar 

  21. Dement’ev, A. G. and Tarakanov, O. G. (1970a) Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mech. USA, 6(4), 594–602.

    Google Scholar 

  22. Dement’ev, A. G. and Tarakanov, O. G. (1970b) Model analysis of the cellular structure of plastic foams of the polyurethane type. Polymer Mech. USA, 6(5), 744–9.

    Article  Google Scholar 

  23. Dement’ev, A. G. and Tarakonov, O. G. (1973) Deformative properties of flexible foams in compression. Polymer Mech. USA, 9(3), 395–400.

    Article  Google Scholar 

  24. Zwikker, C. and Kosten, C. C. (1949) Sound Absorbing Materials, Elsevier, Amsterdam, pp. 15 et seq.

    Google Scholar 

  25. Beranek, L. L. (1960) Noise Reduction. McGraw-Hill, New York, pp. 257–9.

    Google Scholar 

  26. Lambert, R. F. (1982) The acoustical structure of highly porous open-cell foams. J. Acoust. Soc. Am., 72(3), 879–87.

    Article  Google Scholar 

  27. Allard, J.-F., Aknine, A. and Depollier, C. (1986) Acoustical properties of partially reticulated foams with high and medium flow resistance. J. Acoust. Soc. Am., 79(9), 1734–40.

    Article  Google Scholar 

  28. Rogers, C. G. (1991a, b) A Technical and Commercial Analysis of the Manufacture, Supply and Properties of Noise Control Foams, MPhil Thesis, Sheffield City Polytechnic, Sheffield, UK, Ch. 5, Ch. 6.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cunningham, A., Hilyard, N.C. (1994). Physical behaviour of polymeric foams — an overview. In: Hilyard, N.C., Cunningham, A. (eds) Low density cellular plastics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1256-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1256-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4547-6

  • Online ISBN: 978-94-011-1256-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics