Exactly Solvable Models
Chapter
- 333 Downloads
Abstract
In this section we describe four models of quantum statistical mechanics, namely, the BCS (Bardeen -Cooper-Schrieffer) model of superconductivity, the Bogolyubov model of superfluidity, the model of Huang, Yang, and Luttinger, and the Peierls-Frohlich model. We employ the following scheme: First, we define model Hamiltonians for systems of particles contained in a bounded region (cube) ∧ with periodic boundary conditions and then pass to the thermodynamic limit and study the corresponding limiting model Hamiltonian. The procedure of limit transition is not justified; it enables one to determine the model Hamiltonian of an infinite system which is then studied rigorously.
Keywords
Thermodynamic Limit Difference Variable Selfadjoint Operator Bose Condensation Canonical Commutation Relation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Angelescu, N. A., Verbeure, A., and Zagrebnov, V. A. On Bogoliubov’s model of superfluidity, J. Phys. A, Math. Gen. (1992), 25, 3473–3491.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [1]Araki, H. and Woods, E. J. Representations of the canonical commutation relation. Describing a nonrelativistic infinite free Bose gas, J. Math. Phys. (1963), 4, 637–662.MathSciNetADSCrossRefGoogle Scholar
- [1]Araki, H. and Wyss, W. Representations of canonical anticommutation relations, Helv. Phys. Acta. (1964), 37, 136–159.MathSciNetzbMATHGoogle Scholar
- [1]Bardeen, J., Cooper, L. N., and Schrieffer, J. R. Microscopic theory of superconductivity, Phys. Rev. (1957), 106, 162– 164MathSciNetADSCrossRefGoogle Scholar
- [1a]Bardeen, J., Cooper, L. N., and Schrieffer, J. R.Theory of superconductivity, Phys. Rev. (1957), 108, 1175 –1204.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [1]Belokolos, E. D. and Petrina, D. Ya. On a relationship between the methods of approximating Hamiltonian and finite zone integration, Teor. Mat. Fiz. (1984), 58, No. 1,61–71.MathSciNetCrossRefGoogle Scholar
- [1]Billard, P. and Fano, G. An existence proof for the gap equation in the superconductivity theory, Comm. Math. Phys. (1968), 10, 274–219.zbMATHGoogle Scholar
- [1]Bogolyubov, N. N. To the theory of superfluidity, Izv. Akad. Nauk SSSR., Ser. Fiz. (1947), 11, No. 1, 77–90.MathSciNetGoogle Scholar
- [1a]Bogolyubov, N. N. Selected Papers [in Russian], Vol. 2, Naukova Dumka, Kiev (1970), pp. 210–224.Google Scholar
- [2]Bogolyubov, N. N. On the Model Hamiltonian in the Theory of Superconductivity [in Russian], Preprint JINR, No. R-511, Dubna, 1960.Google Scholar
- [2a]Bogolyubov, N. N. Selected Papers [in Russian], Vol. 3, Naukova Dumka, Kiev (1970), pp. 110–173.Google Scholar
- [3]Bogolyubov, N. N. Selected Papers [in Russian], Vol. 3, Naukova Dumka, Kiev (1970), pp. 174–243.Google Scholar
- [3a]Bogolyubov, N. N. Quasiaverages in the Problems of Statistical Mechanics [in Russian], Preprint JINR, No. R-1451, Dubna, 1963.Google Scholar
- [1]Bogolyubov, N. N., Zubarev, D. N., and Tserkovnikov, Yu. A. An asymptotically exact solution for the model Hamiltonian in the theory of superconductivity, Zh. Eksper. Teoret. Fiz. (1960), 39, issue 1, 120–129.Google Scholar
- [1]Bogolyubov, N. N. (jr.) A Method for Investigating Model Hamiltonians [in Russian], Nauka, Moscow, 1974.Google Scholar
- [1]Bogolyubov, N. N. (jr.), Brankov, J. G., Zagrebnov, V. A., Kurbatov, A. M., and Tonchev, N. S. Method of Approximating Hamiltonian in Statistical Physics [in Russian], Izd. Bolgar. Akad. Nauk, Sofia, 1981.Google Scholar
- [1]Bratelli, O. and Robinson, D. Operator Algebras and Quantum Statistical Mechanics, Springer, New York-Heidelberg-Berlin, 1979.Google Scholar
- [1]Dell’Antonio, G. F. Structure of the algebras of some free systems, Comm. Math. Phys. (1968), 9, 81–116.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [1]Emch, G. Algebraic Methods in Statistical Mechanics and Quantum Field Theory [Russian translation], Mir, Moscow, 1976.Google Scholar
- [1]Fannes, M., Spohn H., and Verbeure A. Equilibrium states for mean field models, J. Math. Phys. (1980), 21, 355 –358.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [1]Haag, R. The mathematical Structure of the Bardeen-Cooper-Schrieffer Model, Nuovo Cimento(1962),25,287.MathSciNetzbMATHCrossRefGoogle Scholar
- [1]Hepp, K. and Lieb, H. Equilibrium statistical mechanics of matter interacting with the quantized radiation field, Phys. Rev. A. (1973), 8, 2517.MathSciNetADSCrossRefGoogle Scholar
- [2]Hepp, K. and Lieb, H. On the superradiant phase transition for molecules in a quantized radiation field: The Dicke maser model, Ann. Phys. (1973), 76, 360.MathSciNetADSCrossRefGoogle Scholar
- [1]Huang, K., Yang, C. N., and Luttinger, J. M. Imperfect Bose gas with hard-sphere interaction, Phys. Rev. (1957), 105, 776.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [1]Hunziker, W. On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta. (1966), 39, 451–462.MathSciNetzbMATHGoogle Scholar
- [1]Ginibre, J. On the asymptotic exactness of the Bogoliubov approximation for many boson systems, Comm. Math. Phys. (1968), 8, 26 –51.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [1]GoderisD., VerbeureA., and Vets P. Relaxation of the Dicke maser model, J. Math. Phys. (1987), 28, 2250–2253.MathSciNetADSCrossRefGoogle Scholar
- [1]Gredzhuk, V. I. Justification of the method of approximating Hamiltonian in Bogolyubov’s theory of superfluidity, Dokl. Ukr. Akad. Nauk (1992), No. 1, 58–62.Google Scholar
- [1]Petrina, D. Ya. On Hamiltonians in quantum statistics and a model Hamiltonian in the theory of superconductivity, Teor. Mat. Fiz. (1970), 4, 394.MathSciNetzbMATHCrossRefGoogle Scholar
- [2]Petrina, D. Ya. Exactly Solvable Models of Quantum Statistical Mechanics, Preprint 18/1992,Politecnico di Torino, Torino, 1992.Google Scholar
- [1]Petrina, D. Ya. and Yatsyshin, V. P. On a model Hamiltonian in the theory of superconductivity, Teor. Mat. Fiz. (1972), 10, 283.CrossRefGoogle Scholar
- [1]Reed, M. and Simon, B. Methods of Modern Mathematical Physics, Vols. 1–4, Academic Press, New York-London, 1972, 1975, 1978, 1979.zbMATHGoogle Scholar
- [1]Van den Berg, M., Lewis, J. T., and Pule, J. V. The Large Deviation Principle and Some Models of an Interacting Boson Gas, Comm. Math. Phys. (1988), 118, 61–85.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [1]Van Winter, C. Theory of finite systems of particles. I, Mat.-Fys. Skr. Danske Vid. Selsk. (1964), 1,1–60.Google Scholar
- [1]Zagrebnov, V. A., Brankov, J. G., and Tonchev N. S. A rigorous result for the systems interacting with boson field, Dokl. Akad. Nauk SSSR (1975), 225, 71–73.MathSciNetGoogle Scholar
- [1]Zhislin, S. M. Investigation of the spectrum of the Schrödinger operator for a many-particle system, Trudy Mosk. Mat. Obshch. (1960), 9, 61 –128.Google Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1995