Advertisement

Mathematical Problems in the Theory of Superconductivity

  • D. Ya. Petrina
Chapter
  • 334 Downloads
Part of the Mathematical Physics Studies book series (MPST, volume 17)

Abstract

In this chapter, we give an exposition of the basic ideas in the theory of superconductivity which describes the phenomenon of electric resistance vanishing at low temperatures. For years, this phenomenon was only observed at temperatures close to absolute zero but recent discoveries of superconductivity in metalloceramics have raised the upper bound to the temperatures of liquid nitrogen.

Keywords

Mathematical Problem Thermodynamic Limit Microscopic Theory Elementary Excitation Grand Canonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bardeen, J., Cooper, L. N., and Schrieffer, J. R. Microscopic theory of superconductivity, Phys. Rev. (1957), 106, 162–164MathSciNetADSCrossRefGoogle Scholar
  2. [1a]
    Bardeen, J., Cooper, L. N., and Schrieffer, J. R.Theory of superconductivity, Phys. Rev. (1957), 108, 1175 -1204.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [1]
    Belyaev, S. T. Application of the methods of quantum field theory to the system of bosons, Zh. Eksp. Teor. Fiz. (1958), 34, 417–432.Google Scholar
  4. [1]
    Billard, P. and Fano, G. An existence proof for the gap equation in the superconductivity theory, Comm. Math. Phys. (1968), 10, 274–279.zbMATHGoogle Scholar
  5. [1]
    Bogolyubov, N. N. To the theory of superfluidity, Izv. Akad. Nauk SSSR., Ser. Fiz. (1947), 11,No. 1, 77–90; see also: Selected Papers [in Russian], Vol. 2, Naukova Dumka,Kiev (1970), pp. 210-224.MathSciNetGoogle Scholar
  6. [2]
    Bogolyubov, N. N. Energy levels of a nonideal Bose - Einstein gas, Vestnik Mosk. Univ. (1947),No. 7, 43–56; see also: Selected Papers [in Russian], Vol. 2, Naukova Dumka,Kiev (1970), pp. 242-257.MathSciNetGoogle Scholar
  7. [3]
    Bogolyubov, N. N. On a new method in the theory of superconductivity. I, Zh. Eksp. Teor. Fiz.(1958), 34, issue 1,58–65.Google Scholar
  8. [4]
    Bogolyubov, N. N. On a new method in the theory of superconductivity. I, Zh. Eksp. Teor. Fiz.(1958), 34, issue 1,73–79.Google Scholar
  9. [5]
    Bogolyubov, N. N. On the Model Hamiltonian in the Theory of Superconductivity [in Russian], Preprint JINR, No. R-511, Dubna, 1960; see also: Selected Papers [in Russian],Vol. 3, Naukova Dumka, Kiev (1970), pp. 110 -173.Google Scholar
  10. [6]
    Bogolyubov, N. N. Quasiaverages in the Problems of Statistical Mechanics [in Russian], Preprint JINR, No. R-1451, Dubna, 1963.; see also: Selected Papers [in Russian], Vol. 3,Naukova Dumka, Kiev (1970), pp. 174-243.Google Scholar
  11. [7]
    Bogolyubov, N. N. Superfluidity and quasiaverages in the problems of statistical mechanics, Trudy Mat. Inst. Steklov. (1988), issue 2, 3–45.MathSciNetGoogle Scholar
  12. [1]
    Bogolyubov, N. N., Tolmachev, V. V., and Shirkov, D. V. A New Method in the Theory of Superconductivity [in Russian], Izd. Akad. Nauk SSSR, Moscow, 1958.Google Scholar
  13. [1]
    Bogolyubov, N. N., Zubarev, D. N., and Tserkovnikov, Yu. A. An asymptotically exact solution for the model Hamiltonian in the theory of superconductivity, Zh. Eksp. Teor. Fiz. (1960), 39, issue 1, 120–129.Google Scholar
  14. [1]
    Bogolyubov, N. N. (jr.) A Method for Investigating Model Hamiltonians [in Russian], Nauka, Moscow, 1974.Google Scholar
  15. [1]
    Bogolyubov, N. N. (jr.), Brankov, J. G., Zagrebnov, V. A., Kurbatov, A. M., and Tonchev, N. S. The Method of Approximating Hamiltonian in Statistical Physics [in Russian], Izd. Bolgar. Akad. Nauk, Sofia, 1981.Google Scholar
  16. [1]
    Haag, R. The mathematical structure of the Bardeen-Cooper-Schrieffer model, Nuovo Cim. (1962), 25, 287.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [1]
    Hugenholtz, N. M. Physica(1957),23,481MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [2]
    Hugenholtz, N. M. Quantum theory of many body systems, Reports Progr. Phys. (1965) 28, 201 -248.ADSCrossRefGoogle Scholar
  19. [1]
    Hugenholtz, N. M. and Pines, D. Ground-state energy and excitation spectrum of a system of interacting bosons, Phys. Rev. (1959), 116, 489–506.MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [1]
    Khalatnikov, I. M. Theory of Superfluidity [in Russian], Nauka, Moscow, 1971.Google Scholar
  21. [1]
    Kobe,D.H. Derivation of the principle of compensation of dangerous diagrams, J. Math. Phys. (1967), 8, No. 6, 1200–1210.ADSCrossRefGoogle Scholar
  22. [1]
    Lewis, J. T. Why do bosons condense?, in: Statistical Mechanics and Field Theory: Mathematical Aspects. (Proceedings, Groningen, 1985; T. C. Dorlas, N. M. Hugenholtz, and M. Winnink (eds.)), Springer Lect. Notes Phys. (1986), 257.Google Scholar
  23. [1]
    Petrina, D. Ya. On Hamiltonians in quantum statistics and on a model Hamiltonian in the theory of superconductivity, Teor. Mat. Fiz. (1970), 4, 394.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [1]
    Petrina, D. Ya. and Yatsyshin, V. P. On a model Hamiltonian in the theory of superconductivity, Teor. Mat. Fiz. (1972), 10, 283.CrossRefGoogle Scholar
  25. [1]
    Quaegebeur, J. and Verbeure, A. Relaxation of the ideal Bose gas, Lett. Math. Phys. (1985), 9, 93 -101. Thirring,W.MathSciNetADSCrossRefGoogle Scholar
  26. [1]
    Quaegebeur, J. and Verbeure, A. On the mathematical structure of the BCS model, Comm. Math. Phys. (1968), 7, 181.MathSciNetCrossRefGoogle Scholar
  27. [1]
    Van den Berg, M., Lewis, J. T., and Pule, J. V. A general theory of Bose - Einstein condensation, Helv. Phys. Acta. (1968), 59, 1271–1288.Google Scholar
  28. [1]
    Zagrebnov, V. A. and Papoyan, V. V. On the problem of equivalence of ensembles for Bose systems (the ideal Bose gas), Teor. Mat. Fiz. (1986) 69, 1–22.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • D. Ya. Petrina
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKievUkraine

Personalised recommendations