New developments in leukocyte Chemotaxis research: a survey

  • P. C. Wilkinson
Part of the Inflammation: Mechanisms and Treatment book series (FTIN, volume 4)


A book such as this presents a suitable opportunity for appraisal of recent progress in the study of the locomotion and Chemotaxis of leukocytes, a study that has gained momentum during the past decade, but that has for many years fascinated biologists and medical scientists and will see its centenary during the 1980s1. Over the past few years there have been a number of major developments. Firstly, the locomotor reactions of leukocytes to chemoattractants are now defined with better precision than formerly. Both conceptually and in the laboratory, we can now distinguish Chemotaxis, as a reaction by which chemical substances determine the direction of leukocyte locomotion, from chemokinesis, as a reaction by which they determine its rate2. Since positive chemotactic reactions cause cells to accumulate, and positive chemokinetic reactions may cause them to disperse, the practical distinction between these two reactions is important. Secondly, these years have seen the definition of classes of binding sites on the leukocyte surface for various categories of chemotactic factors which are discussed below. Thirdly, a beginning has been made in explaining the process of transduction, by which binding of a chemotactic factor to the cell surface signals a locomotor event in the cell. The locomotor events themselves, which are mediated by microfilament systems consisting of actin and myosin, actin-binding protein and other related proteins, are not yet understood in detail at the molecular level3.


Human Neutrophil Chemotactic Factor Chemotactic Response Hexose Monophosphate Chemotactic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leber, T. (1888). Uber die Entstehung der Entzündung und die Wirkung der entzundunger-regenden Schädlichkeiten. Fortschr. Med. 4, 460Google Scholar
  2. 2.
    Keller, H.U., Wilkinson, P.C., Abercrombie, M., Becker, E.L., Hirsch, J.G., Miller, M. E., Ramsey, W. S., and Zigmond, S. H. (1977). A proposal for the definition of terms related to locomotion of leucocytes and other cells. Clin. Exp. Immunol, 27, 377PubMedGoogle Scholar
  3. 3.
    Stossel, T. P. (1978). The mechanism of leukocyte locomotion. In Gallin, J.I. and Quie, P. G. (eds.) Leukocyte Chemotaxis, p. 143. (New York: Raven Press)Google Scholar
  4. 4.
    Schiffmann, E., Corcoran, B. A. and Wahl, S.A. (1975). N-formyl methionyl peptides as chemoattractants for leukocytes. Proc. Nat. Acad. Sci. (USA), 72, 1059CrossRefGoogle Scholar
  5. 5.
    Showell, H. J., Freer, R. J., Zigmond, S.H., Schiffmann, E., Aswanikumar, S., Corcoran, B. and Becker, E. L. (1976). The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils. J. Exp. Med., 143, 1154PubMedCrossRefGoogle Scholar
  6. 6.
    Aswanikumar, S., Corcoran, B., Schiffmann, E., Day, A. R., Freer, R. J., Showell, H. J., Becker, E. L. and Pert, C. B. (1977). Demonstration of a receptor on rabbit neutrophils for chemotactic peptides. Biochem. Biophys. Res. Commun., 74, 810PubMedCrossRefGoogle Scholar
  7. 7.
    Niedel, J., Wilkinson, S. and Cuatrecasas, P. (1979). Receptor-induced uptake and degradation of 125I-chemotactic peptides by human neutrophils. J. Biol. Chem., 254, 10700PubMedGoogle Scholar
  8. 8.
    Unpublished observations (1980)Google Scholar
  9. 9.
    Sha’afi, R. I., Williams, K., Wacholtz, M.C. and Becker, E. L. (1978). Binding of the chemotactic synthetic peptide [3H]formyl-nor-leu-leu-phe to plasma membrane of rabbit neutrophils. FEBS Lett. 91, 305PubMedCrossRefGoogle Scholar
  10. 10.
    Williams, L. T., Synderman, R., Pike, M. C., and Lefkowitz, R. J. (1977). Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci (USA)., 74, 1204CrossRefGoogle Scholar
  11. 11.
    Zigmond, S. H. (1977). Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol., 75, 606PubMedCrossRefGoogle Scholar
  12. 12.
    Niedel, J. E., Kahane, I, and Cuatrecasas, P. (1979). Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils. Science, 205, 1412PubMedCrossRefGoogle Scholar
  13. 13.
    O’Flaherty, J.T., Showell, H. J., Kreutzer, D.L., Ward, P. A. and Becker, E. L. (1978). Inhibition of in vivo and in vitro neutrophil responses to chemotactic factors by a competitive antagonist. J. Immunol., 120, 1326PubMedGoogle Scholar
  14. 14.
    Aswanikumar, S., Schiffmann, E., Corcoran, B.A., Pert, C.B., Morell, J.L. and Gross, E. (1978). Antibiotics with agonist and antagonist chemotactic activity. Biochem. Biophys. Res. Commun., 80, 464PubMedCrossRefGoogle Scholar
  15. 15.
    Wilkinson, P. C. (1979). Synthetic peptide chemotactic factors for neutrophils: the range of active peptides, their efficacy and inhibitory activity, and susceptibility of the cellular response to enzymes and bacterial toxins. Immunology, 36, 579PubMedGoogle Scholar
  16. 16.
    Chenoweth, D. E. and Hugli, T. E. (1978). Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc. Nat. Acad. Sci. (USA)., 75, 3943CrossRefGoogle Scholar
  17. 17.
    Fernandez, H. N., Henson, P. M., Otani, A. and Hugli, T. E. (1978). Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions. J. Immunol., 120, 102Google Scholar
  18. 18.
    Chenoweth, D. E., Rowe, J. G. and Hugli, T. E. (1979). A modified method for Chemotaxis under agarose. J. Immunol. Meth., 25, 337CrossRefGoogle Scholar
  19. 19.
    Allan, R. B. and Wilkinson, P. C. (1978). A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leucocytes. Exp. Cell Res., 111, 191PubMedCrossRefGoogle Scholar
  20. 20.
    Wilkinson, P. C. (1972). Characterization of the chemotactic activity of casein for neutrophil leucocytes and macrophages. Experientia, 28, 105CrossRefGoogle Scholar
  21. 21.
    Wilkinson, P. C. (1974). Surface and cell membrane activities of leukocyte chemotactic factors. Nature (London), 251, 58CrossRefGoogle Scholar
  22. 22.
    Wilkinson, P.C. and McKay, I.C. (1972). The molecular requirements for chemotactic attraction of leucocytes by proteins. Studies of proteins with synthetic side groups. Eur. J. Immunol., 2, 570PubMedCrossRefGoogle Scholar
  23. 23.
    Wilkinson, P.C. (1977). Succinyl bee venom melittin is a leukocyte chemotactic factor. Nature (London), 267, 713CrossRefGoogle Scholar
  24. 24.
    Wilkinson, P. C. and Allan, R. B. (1978). Binding of protein chemotactic factors to the surfaces of neutrophil leukocytes and its modification with lipid-specific bacterial toxins. Mol. Cell Biochem., 20, 25PubMedCrossRefGoogle Scholar
  25. 25.
    Wilkinson, P. C. (1973). Recognition of protein structure in leukocyte Chemotaxis. Nature (London), 244, 512CrossRefGoogle Scholar
  26. 26.
    Thorbecke, G. J., Maurer, P. H., and Benecerraf, B. (1960). The affinity of the reticuloendothelial system for various modified serum proteins. Br. J. Exp. Pathol., 41, 190PubMedGoogle Scholar
  27. 27.
    Wilkinson, P. C. and Allan, R. B. (1978). Assay systems for measuring leukocyte locomotion: an overview. In Gallin, J. I. and Quie, P. G. (eds.) Leukocyte Chemotaxis, p. 1. (New York: Raven Press)Google Scholar
  28. 28.
    Keller, H. U., Wissler, J. H., Hess, M. W. and Cottier, H. (1978). Distinct chemokinetic and chemotactic responses in neutrophil granulocytes. Eur. J. Immunol., 8, 1PubMedCrossRefGoogle Scholar
  29. 29.
    Turner, S. R., Tainer, J. A. and Lynn, W. S. (1975). Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. Nature (London), 257, 680CrossRefGoogle Scholar
  30. 30.
    Goetzl, E. J., Brash, A. R., Tauber, A. I., Oates, J. A. and Hubbard, W. C. (1980). Modulation of human neutrophil function by mono-hydroxy-eicosatetraenoic acids. Immunology (In press)Google Scholar
  31. 31.
    Goetzl, E. J. and Austen, K. F. (1974). Stimulation of human neutrophil leukocyte aerobic glucose metabolism by purified chemotactic factors. J. clin. Invest., 53, 591PubMedCrossRefGoogle Scholar
  32. 32.
    Hatch, G. E., Gardner, D.E. and Menzel, D. B. (1978). Chemiluminescence of phagocytic cells caused by N-formylmethionyl peptides. J. Exp. Med., 147, 182PubMedCrossRefGoogle Scholar
  33. 33.
    Lehmeyer, J. E., Snyderman, R. and Johnston, R. B. (1979). Stimulation of neutrophil oxidative metabolism by chemotactic peptides: influence of calcium ion concentration and cyto-chalasin B and comparison with stimulation by phorbol myristate acetate. Blood, 54, 35PubMedGoogle Scholar
  34. 34.
    Simchowitz, L. and Spilberg, I. (1979). Generation of superoxide radicals by human peripheral neutrophils activated by chemotactic factor. Evidence for the role of calcium. J. Lab. Clin. Med., 93, 583PubMedGoogle Scholar
  35. 35.
    Becker, E. L., Sigman, M. and Oliver, J. M. (1979). Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187. Am J. Pathol., 95, 81PubMedGoogle Scholar
  36. 36.
    Anderson, R., Glover, A., and Rabson, A. R. (1978). The effect of chemotactic factors and agents which influence neutrophil movement in anaerobic glycolysis and hexose monophosphate shunt activity. Immunology, 35, 141PubMedGoogle Scholar
  37. 37.
    Goldstein, I., Hoffstein, S., Gallin, J. and Weissmann, G. (1973). Mechanisms of lysosomal enzyme release from human leukocytes. Microtubule assembly and membrane fusion induced by a component of complement. Proc. Natl. Acad. Sci (USA)., 70, 2916CrossRefGoogle Scholar
  38. 38.
    Henson, P. M. (1971). The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on non phagocytosable surfaces or phagocytosable particles. J. Immunol., 107, 1535PubMedGoogle Scholar
  39. 39.
    Venge, P. (1979). Kinetic studies of cell migration in a modified Boyden chamber: dependence on cell concentration and effects of the chymotrypsin-like cationic protein of human granulocytes. J. Immunol., 122, 1180PubMedGoogle Scholar
  40. 40.
    Hirata, F., Corcoran, B. A., Venkatasubramanian, K., Schiffmann, E. and Axelrod, J. (1979). Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc. Nat. Acad. Sci. (USA)., 76, 2640CrossRefGoogle Scholar
  41. 41.
    Volpi, M., Naccache, P. H. and Sha’afi, R. I. (1980). Arachidonate metabolites increase the permeability of the plasma membrane of neutrophils to calcium. Biochem. Biphys. Res. Commun. (In press)Google Scholar
  42. 42.
    Naccache, P.H., Showell, H.J., Becker, E.L. and Sha’afi, R.I. (1979). Pharmacological differentiation between the chemotactic factor induced intracellular calcium redistribution and transmembrane calcium influx in rabbit neutrophils. Biochem. Biphys. Res. Commun., 89, 1224CrossRefGoogle Scholar
  43. 43.
    Naccache, P., Freer, R. J., Showell, J. H., Becker, E. L. and Sha’afi, R. I. (1977). Transport of sodium, potassium and calcium across rabbit polymorphonuclear leukocyte membranes: effect of chemotactic factor. J. Cell Biol., 73, 428PubMedCrossRefGoogle Scholar
  44. 44.
    Becker, E. L., Talley, J. V., Showell, H. J., Naccache, P. H. and Sha’afi, R. I. (1978). Activation of the rabbit polymorphonuclear leukocyte membrane Na+K+-ATPase by chemotactic factor. J. Cell Biol., 77, 329PubMedCrossRefGoogle Scholar
  45. 45.
    Gallin, J. I. and Rosenthal, A. S. (1974). The regulatory role of divalent cations in human granulocyte Chemotaxis: evidence for an association between calcium exchanges and microtubule assembly. J. Cell Biol., 62, 594PubMedCrossRefGoogle Scholar
  46. 46.
    Boucek, M. M. and Snyderman, R. (1976). Calcium influx requirement for human neutrophil Chemotaxis: inhibition by lanthanum chloride. Science, 193, 905PubMedCrossRefGoogle Scholar
  47. 47.
    Petroski, R. J., Naccache, P. H., Becker, E. L. and Sha’afi, R. I. (1979). Effect of chemotactic factors on calcium levels of rabbit neutrophils. Am. J. Physiol., 237, C43PubMedGoogle Scholar
  48. 48.
    Naccache, P. H., Volpi, M., Showell, H. J., Becker, E. L. and Shaafi, R. I. (1979). Chemotactic factor-induced release of membrane calcium in rabbit neutrophils. Science, 203, 461PubMedCrossRefGoogle Scholar
  49. 49.
    Gallin, E. K. and Gallin, J. I. (1977). Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J. Cell Biol., 75, 277PubMedCrossRefGoogle Scholar
  50. 50.
    Anderson, R., Glover, A., Koornhof, H. J. and Rabsen, A. R. (1976). In vitro stimulation of neutrophil motility by levamisole: Maintenance of cGMP levels in chemotactically stimulated levamisole-treated neutrophils. J. Immunol., 117, 428PubMedGoogle Scholar
  51. 51.
    Jackowski, S. and Sha’afi, R. I. (1979). Response of adenosine cyclic 3′, 5′-monophosphate level in rabbit neutrophils to the chemotactic peptide formyl-methionyl-leucyl-phenylalanine. Mol. Pharmacol. 16, 473PubMedGoogle Scholar
  52. 52.
    Keller, H. U., Wissler, J.H. and Ploem, J. (1979). Chemotaxis is not a special case of hapto-taxis. Experientia, 35, 1669PubMedCrossRefGoogle Scholar
  53. 53.
    Hatch, G.E., Nichols, W. K. and Hill, H. R. (1977). Cyclic nucleotide changes in human neutrophils induced by chemoattractants and chemotactic modulators. J. Immunol. , 119, 450PubMedGoogle Scholar
  54. 54.
    Estensen, R.D., Hill, H.R., Quie, P.G. and Hogan, H.D. (1977). Cyclic GMP and cell movement. Nature (London), 245, 458CrossRefGoogle Scholar
  55. 55.
    Sandeler, J. A., Gallin, J. I. and Vaughan, M. (1975). Effects of serotonin, carbamylcholine and ascorbic acid on leukocyte cGMP and Chemotaxis. J. Cell Biol., 67, 480CrossRefGoogle Scholar
  56. 56.
    Gallin, J. I., Sandeler, J. A., Clyman, R.I., Mangamiello, V. C. and Vaughan, M. (1978). Agents that increase cyclic AMP inhibit accumulation of cGMP and depress human monocyte locomotion. J. Immunol., 120, 492PubMedGoogle Scholar
  57. 57.
    Rabson, A.R., Whiting, D.A., Anderson, R., Glover, A. and Koornhof, H.J. (1977). Depressed neutrophil motility in patients with recurrent herpes simplex virus infections. In vitro restoration with levamisole. J. Infect. Dis., 135, 113PubMedCrossRefGoogle Scholar
  58. 58.
    Wright, D. G., Kirkpatrick, C. H. and Gallin, J. I. (1977). Effects of levamisole on normal and abnormal leukocyte locomotion. J. Clin. Invest., 59, 941PubMedCrossRefGoogle Scholar
  59. 59.
    Wilkinson, P.C. (1976). A requirement for albumin as carrier for low molecular weight leucocyte chemotactic factors. Exp. Cell Res., 103, 415PubMedCrossRefGoogle Scholar
  60. 60.
    Wilkinson, P. C. and Allan, R. B. (1978). Chemotaxis of neutrophil leukocytes towards substratum-bound protein attractants. Exp. Cell Res., 117, 403PubMedCrossRefGoogle Scholar
  61. 61.
    Derich, M. P., Wilhelm, D. and Till, G. (1977). Essential role of surface bound chemoattractant in leukocyte migration. Nature (London), 270, 351CrossRefGoogle Scholar
  62. 62.
    Carter, S. B. (1965). Principles of cell motility: the direction of cell movement and cancer invasion. Nature (London), 208, 1183CrossRefGoogle Scholar
  63. 63.
    Carter, S. B. (1967). Haptotaxis and the mechanism of cell motility. Nature (London), 213, 256CrossRefGoogle Scholar
  64. 64.
    Smith, R. P. C., Lackie, J. M. and Wilkinson, P. C. (1979). The effects of chemotactic factors on the adhesiveness of rabbit neutrophil granulocytes. Exp. Cell Red., 122, 169CrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • P. C. Wilkinson
    • 1
  1. 1.Scotland

Personalised recommendations