Gastrointestinal Hormones and Intestinal Motility
  • S. J. Konturek


In recent years, there has been a virtual explosion in discovery of various hormonal peptides isolated from the gastrointestinal tract and the pancreas. The truly remarkable development in digestive endocrinology could be attributed 1. to the successful isolation of what are generally regarded as the major gastrointestinal hormones (gastrin, CCK and secretin) — and since then, many peptides whose hormonal status has not yet been clarified and 2. to the application of highly sensitive methods of quantitative measurement of circulating hormones by radioimmunoassay and their tissue distribution by innunocytochenistry.


Small Bowel Vasoactive Intestinal Peptide Pancreatic Fistula Spike Activity Gastrointestinal Motility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dockray, G.B. (1979). Comparative biochemistry and physiology of gut hormones. Annu. Rev. Physiol. 41, 83–95PubMedCrossRefGoogle Scholar
  2. 2.
    Erspamer, V., Melchiorri, P., Broccardo, M., Erspamer, G.F., Falaschi, P., Improta, G., Negri, L., and Renda, T. (1981). The braingut-skin triangle: New peptides. Peptides 2 (Suppl. 2) 7–16PubMedCrossRefGoogle Scholar
  3. 3.
    Suchanek, G., and Kreil, G. 1977 Translation of melittin mes- senger RNA in vitro yields a product terminating with glutaminylglycine rather than with glutaaninamide. Proc. Natl. Acad. Sci. U.S.A. 74, 975–978PubMedCrossRefGoogle Scholar
  4. 4.
    Solcia, E., Capella, C. Buffa, R., Usellini, L., Fiacca, R., and Sessa, F. (1981) Endocrine cells of the digestive system. In: Johnson, L.R. (ed.). Physiology of the Gastrointestinal Tract vol. 1 pp. 39–58. New York: Raven Press )Google Scholar
  5. 5.
    Jessen, K.R. Polak, J.M., Van Noortden, Blown, S.R., and Burnstock, G. (1980). Peptide-containing neurones connect the two ganglionated plexuses of the enteric nervous system. Nature (Lord.). 283: 391–393CrossRefGoogle Scholar
  6. 6.
    Lee, K.Y., Chey, W.Y., Tai, H.H., and Yajima, H. (1978). RadioimRnnoassay of motilin. Validation and studies on the relationship between plasma motilin and interdigestive myoelectric activity of the duodenum of dog. Am. J. Dig. Dis. 23, 789–795PubMedCrossRefGoogle Scholar
  7. 7.
    Janssens, J., Hellemans, J., Adrian, T.E., Blown, S.R., Peeters, T.L., Christofides, N. and Vantrappen, G.R. (1982). Pancreatic po-lypeptide is not involved in the regulation of the migrating motor complex in man. Regulatory Peptides 3, 41–49PubMedCrossRefGoogle Scholar
  8. 8.
    Peeters, T.L., Janssens, J., Vantrappen, G.R. (1983). Somatostatin and the interdigestive migrating motor complex in man. Regulatory Peptides 5, 209–217PubMedCrossRefGoogle Scholar
  9. 9.
    Chey, W.Y., and Lee, R.Y. (1980). Motilin. Clinics in G-antroenterol 9, (3), 645–656Google Scholar
  10. 10.
    Lee, K.Y., Kim, M.S., and Chey, W.Y. (1980). Effects of a meal and gut hormones on plasma motilin and duodenal motility in dog. Am. J. Physiol. 238, G280–G283PubMedGoogle Scholar
  11. 11.
    Walsh, J.H. (1981) Gastrointestinal hormones and peptides. In: Johnson, L.R. (ed.). Physiology of the Gastrointestinal Tract vol. 1. pp. 59–144 ( New York: Raven Press )Google Scholar
  12. 12.
    Creutzfeldt, W., Ebert, R., Nauck, M., Ste, F. (1983). Disturbances of the entera-insular axis. Scand. J. Gastroent. 18 (Suppl. 82), 111–119Google Scholar
  13. 13.
    Go, V.L.W., and Miller, L.J. (1983). The role of gastrointestinal hormones in the control of postprandial and interdigestive gastrointestinal function. Scand. J. Gastroent. 18 (Suppl. 82), 135–142Google Scholar
  14. 14.
    Grossman, M.T. (1977). Physiological effects of gastrointestinal hormones. Fed. Proc. 36, 1930Google Scholar
  15. 15.
    Konturek, S.J., Thor, P., Krol, R. Dembinski, A., and Schally, A. V. (1980) Influence of n~ethionine-enkephalin and morphine on myoelectric activity of small bowel. Am. J. Physiol. 238: G384–G389PubMedGoogle Scholar
  16. 16.
    Erckenbrecht, J., Caspary, J., Körner, M.M., Berges, W., and Wien-beck, J. (1982). The inhibiting effect of pentagastrin on interdigestive small bowel motility is antagonized by proglumide. Gastroenterology 82, 1050Google Scholar
  17. 17.
    Chey, W.Y., Kim, M.S., Lee, K.Y., and Chang, T.M. (1979). Effect of rabbit antisecretin serum on postprandial pancreatic secretion in dogs. Gastroenterology 77, 1268–1275PubMedGoogle Scholar
  18. 18.
    Lee, K.Y., Chang, T.M., and Chey, W.Y. (1983) Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in dog. Am. J. Physiol. (in press)Google Scholar
  19. 19.
    Sundler, P. Hakanson, R., Leander, S. (1980). Peptidergic nervous systems in the gut. Clinics in Gastroenterology 9 (3), 517–544PubMedGoogle Scholar
  20. 20.
    Boldyreff, W.N. (1905). Le travail periodique de l’appareil digestif endehors de la digestion. Arch. Des. Sci. Biol. 11, 1–157Google Scholar
  21. 21.
    Szurszewski, J.H. (1969). A migrating electric complex of the canine small intestine. Am. J. Physiol. 217, 1757–1763PubMedGoogle Scholar
  22. 22.
    Vantrappen, G.R., Janssens, J., Hellemans, J., and Ghoos, Y. (1977). The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J. Clin. Invest. 59, 1158–1166PubMedCrossRefGoogle Scholar
  23. 23.
    Carlson, G.M., Bedi, B.S. and Code, C.F. (1972). Mechanism of propagation of intestinal interdigestive myoelectric complex. Am. J. Physiol. 222, 1027–1030PubMedGoogle Scholar
  24. 24.
    Code, C.F., and Marlett, J.A. (1975). The interdigestive myoelectric complex of the stomach and small bowel of dogs. J. Physiol. (Land.) 246, 298–309Google Scholar
  25. 25.
    Schlegel, J.F., and Code, C.F. (1975). The gastric peristalsis of the interdigestive housekeeper. In: Vantrappen, G. (ed.). Proceedings of the Fifth International Symposium on Gastrointestinal Nbtility pp. 321–328. ( Herentals: Typoff Press )Google Scholar
  26. 26.
    Weisbrodt, N.W., Copeland, E.M., Thor, P.J. (1976). The myoelectric activity of the small intestine of the dog during total parenteral nutrition. Proc. Soc. Exp. Biol. Med. 153, 121–124PubMedGoogle Scholar
  27. 27.
    Bueno, L. and Ruckebusch, Y. (1978). Migrating myoelectric complexes: disruption, enhancement and disorganisation. In: Duthie, H. (ed.). Gastrointestinal Motility in Health and Disease pp. 83–91. ( Lancaster: MI?, Press )Google Scholar
  28. 28.
    Boldyreff, W. (1911). Einige neue Seiten der Tatigkeit des Pancreas. Ergab. der Physiol. 11, 121–217CrossRefGoogle Scholar
  29. 29.
    Hoelzel, F. (1925). The relation between the secretory and motor activity in the fasting stanach (man). Am. J. Physiol. 73, 463–469Google Scholar
  30. 30.
    Vantrappen, G.R., Peeters, T.L., and Janssens, J. (1379). The secretory component of the interdigestive migrating motor complex in man. Scand. J. Gastroent. 14, 663–667CrossRefGoogle Scholar
  31. 31.
    Kaene, F.B., DiMagno, E.P., Dozois, R.R., and Go, V.L.W. (1980). Relationship among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma-pancreatic polypeptide and motilin. Gastroenterology 78, 310–316Google Scholar
  32. 32.
    Keene, F.B., DiMagno, E.P., and Malagelada, J.R. (1981). Duodenogastric reflux in humans: Its relationship to fasting antroduodenal motility and gastric, pancreatic and biliary secretion. Gastroenterology 81, 726–731Google Scholar
  33. 33.
    Brown, J.C., Mutt, V., and Dryburgh, J.R. (1971). The further purification of motilin, a gastric motor activity stimulating polypeptide from the mucosa of the small intestine in hogs. Can. J. Physiol. Pharmacol. 48, 339–405Google Scholar
  34. Itoh, Z., Honda, R., Hiwatashi, K., Takeuchi, S., Aizawa, I., Takayanagi, R., and Conch, E.F. (1976). motilin-induced mechanical activity in the canine alimentary tract. Scand. J. Gastroent. 11 (Suppl. 39) 93–110Google Scholar
  35. 35.
    Wingate, D.L., Ruppin, H., Green, W.E.R., Thompson, H.H., Damchke,W., Wunsch, E., Demling, L., and Ritchie, H.D. (1976). Motilin-induced electrical activity in the canine gastrointestinal tract. Scand. J. Gastroent. 11 (Suppl. 39), 111–118Google Scholar
  36. 36.
    Konturek, S.J., Dembinski, A., Krol, R., and Wünsch, E. (1976). Effect of motilin on gastric and pancreatic secretion in dogs. Scand. J. Gastroent. 11, 57760Google Scholar
  37. 37.
    Itoh, Z., Takeuchi, S., Aizawa, I., Mari, K., Taminato, T., Sei-no, Y., Inaira, H., and Yanaihara, N. (1978). Changes in plasma moti-lin concentration and gastrointestinal contractile activity in conscious dogs. Am. J. Dig. Dis. 23, 929–935PubMedCrossRefGoogle Scholar
  38. 38.
    Hall, K.E., Diamant, W.E., El-Sharkaway, T.Y. and Greenberg, G.R. (1953). Effects of pancreatic polypeptide on canine migrating motor complex and plasma motilin. Am. J. Physiol. 245, G178–G185Google Scholar
  39. 39.
    Wingate, D.L. (1983) The small intestine. In: Christensen, J., and Wingate, D.L. (ed). A Guide to Gastrointestinal Motility. pp. 128–156. ( Bristol: Wright. PSG )Google Scholar
  40. 40.
    Sara, S., Stoddard, C., Belbeck, L., and McWade, D. (1981). Intrinsic nervous control of migrating myoelectric complexes. Am. J. Physiol. 241, G16–G23Google Scholar
  41. 41.
    Thor, P., Krol, R., Konturek, S.J., Coy, D.H. and Schally, A.V. (1978). Effect of sanatostatin on myoelectric activity of small bowel. Am. J. Physiol. 235, E249–254PubMedGoogle Scholar
  42. 42.
    Thor, P.J., Sendur, R., and Kcnturek, S.J. (1982). Influence of substance P on myoelectric activity of the small bowel. Am. J. Physiol. 243, G493–496PubMedGoogle Scholar
  43. 43.
    Sarna, S., Condon, R.E., and Cowles, W. (1983). Morphine versus motilin in the initiation of migrating myoelectric complexes. Am. J. Physiol. 245, G217–G220PubMedGoogle Scholar
  44. 44.
    Poitras, P., Steinbach, J.H., Van Deventer, G., Code, C.F., and Walsh, J.H. (1980). Motilin-independent ectopic fronts of the inter-digestive myoelectric complex in dogs. Am. J. Physiol. 239, G215–G220PubMedGoogle Scholar
  45. 45.
    Lorber, S.H., Kamarav, S.A., and Shay, H. (1950). Effect of sham-feeding on gastric motor activity of the dog. Am. J. Physiol. 162, 447–451PubMedGoogle Scholar
  46. 46.
    Preshaw, R.M., and Knauf, R.S. (1966). The effect of sham-feeding on the secretion and motility of canine duodenal pouches. Gastroenterology 51, 193–199PubMedGoogle Scholar
  47. 47.
    Steinbach, J.H., and Code, C.F. (1980). Increase in the period of the interdigestive myoelectric complex (IIMOC) with anticipation of feeding. In: Christensen, J. (ed.). Gastrointestinal Motility. pp. 247–252. ( New York: Raven Press )Google Scholar
  48. 48.
    Defilippi, C., and Valenzuela, E. (1981). Sham-feeding disrupts the interdigestive motility complex in man. Scand. J. agtroent. 16, 977–979CrossRefGoogle Scholar
  49. 49.
    Peeters, T.L. Vantrappen, G., and Janssens, J. (1983). Sham-feeding amplifies the secretory component of interdigestive activity. Gastroenterology 84, 1272Google Scholar
  50. 50.
    Thar, P., Sendur, R., Konturek, S.J. (1982). Effect of sham-feeding and moscarinic receptors on myoelectric activity of the small intestine in the dog. Gastroenterology 82, 1197Google Scholar
  51. 51.
    Weisbrodt, N.W., Copeland, E.M., Thor, P., Muk1opadhyay, A.K., and Johnson, L.R. (1976). Nervous and humoral factors which influence the fasted patterns of intestinal myoelectric activity. In: Vantrappen, G. (ed.). Proceedings of the 5th International Symposium on Gastrointestinal Motility pp. 82–87. ( Herentals: Typoff Press )Google Scholar
  52. 52.
    Chang, J.C., Danchel, J., Sara, P., Angel, F., Bouchet, P., Lambert, A., and Grenier, J.F. (1978). Specific effects of different food components on intestinal motility. Eur. Surq. Res. 10, 425–432CrossRefGoogle Scholar
  53. 53.
    Weisbrodt, N.W., Moore, E., Marley, R., Copeland, E.M., and Johnson, L.R. (1974). Effects of pentagstrin on the myoelectric activity of the small intestine. Am. J. Physiol. 227, 425–429PubMedGoogle Scholar
  54. 54.
    Mukhopadhyay, A.K., Thor, P., Copeland, E.M., Johnson, L.R., and Weisbrodt, N.W. (1977). Effect of cholecystokinin on myoelectric activity of small intestine of the dog. Am. J. Physiol. 2321, E 44–E47Google Scholar
  55. 55.
    Mukhopadhyay, A.K., Johnson, L.R., Copeland, E.M., and Weisbrodt, N. (1975). Effect of matin on electric activity of small intestine. Am. J. Physiol. 229, 484–488PubMedGoogle Scholar
  56. 56.
    Bueno, L., and Ruckebusch, M. (1976). Insulin and jejunal electrical activity in dogs and sheep. Am. J. Physiol. 230, 1539–1544Google Scholar
  57. 57.
    Thanes, P.A., Schang, J.C., Kelly, K.A., and Go, V.L.W. (1980). Can endogenous gastrin inhibit canine interdigestive gastric motility. Gastroenterology 78, 716–721Google Scholar
  58. 58.
    Wingate, D.L., Pearce, P.A., Hutton, M., and Thompson, H.H. (1978). Quantitative comparison of the effects of cholecystokinin, secretin and pentagastrin on gastrointestinal myoelectric activity in the conscious dog. Gut 19, 593–601PubMedCrossRefGoogle Scholar
  59. 59.
    Thor, K., Rosell, S., Rokaeus, A., and Kager, L. (1982). (G1u4)Neurotensin changes the motility pattern of the duodenum and proximal.74rnun from a fasting-type to a fed-type. Gastroenterology 83, 569–574Google Scholar
  60. 60.
    Thor, P.J., Konturek, J.W., Sendur, R., and Konturek, S.J. Comparison of neurotensin and fat on myoelectric activity pattern of the small bowel (in this issue)Google Scholar

Copyright information

© MTP Press Limited 1984

Authors and Affiliations

  • S. J. Konturek

There are no affiliations available

Personalised recommendations