Advertisement

The Electrical Basis for the Inhibitory Response of the Guinea Pig Internal Anal Sphincter to Nerve Stimulation and Drugs

  • S. P. Lim
  • T. C. Muir

Abstract

The guinea pig internal anal sphincter (gpIAS) is innervated by three types of efferent nerves, cholinergic excitatory, adrenergic excitatory and non-adrenergic, non-cholinergic (NANC) inhibitory nerves, the transmitter for which is unknown (1).

Keywords

Gastrointestinal Motility Field Stimulation Membrane Potential Change Spike Discharge Taenia Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Costa, M. and Furness, J.B. (1973). The innervation of the internal anal sphincter of the guinea-pig. In: The Proceedings of the 4th International Symposium on Gastrointestinal Motility, 681–90Google Scholar
  2. 2.
    Gillespie, J.S. (1982). Non-adrenergic non-cholinergic inhibitory control of gastrointestinal motility. In: Weinbeck, M. (ed). Motility of the Digestive Tract. pp. 51–66. ( New York: Raven PressGoogle Scholar
  3. 3.
    Creed, K.E., Gillespie, J.S. and Muir, T.C. (1975). The electric-al basis of excitation and inhibition in the rat anococcygeus muscle. J. Physiol., 245, 33–47PubMedGoogle Scholar
  4. 4.
    Byrne, N.G. and Muir, T.C. (1982). The electrical basis of the bovine retractor penis to field stimulation and an inhibitory extract. J. Physiol., 328, 539Google Scholar
  5. 5.
    Creed, K.E. and Gillespie, J.S. (1977). Some electrical properties of the rabbit an00000ygous muscle end comparison or the effects of inhibitory nerve stimulation in the rat and rabbit. J. Physiol., 273, 137–53PubMedGoogle Scholar
  6. 6.
    Bennett, M.R., Burnstock, G. and Holman, M.E. (1966). Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J. Physiol., 182, 541–58PubMedGoogle Scholar
  7. 7.
    Baidan, L.V., Vladimirova, I.A., Miroshnikov, A.I. and Taran, G.A. (1978). Effects of apamin upon synaptic transmission in various types of synapses. Dokl. Akad. Nauk. SSSR., 241, 1224–7PubMedGoogle Scholar
  8. 8.
    Bowman, A. and Gillespie, J.S. (1982). Block of some nonadrenergic inhibitory responses of smooth muscle by a substance from haemolysed erythrocytes. J. Physiol., 328, 11–25PubMedGoogle Scholar
  9. 9.
    Abe, Y. and Tornita, T. (1968). Cable properties of smooth muscle. J. Physiol., 196, 87–100PubMedGoogle Scholar
  10. 10.
    Bowman, A., Gillespie, J.S. and Pollock, D. (1982). Oxyhaemoglobin blocks non-adrenergic non-cholinergic inhibition in the bovine retractor penis muscle. Eur. J. Pharmac., 85 (2), 221–4CrossRefGoogle Scholar
  11. 11.
    Den Hertog, A. and Jager, L.P. (1975). Ion fluxes during the inhibitory junction potential in the guinea-pig taenia coli. J. Physiol., 250, 681–91Google Scholar
  12. 12.
    Jenkinson, D.H. (1981). Peripheral actions of apamin. In: Trends in Pharmacological Sciences, December, pp. 318–20. ElsevierGoogle Scholar
  13. 13.
    Hartzell, H.C., Kuffler, S.W., Stickgold, R. and Yoshikami, D. (1977). Synaptic excitation and inhibition resulting from direct action on acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones. J. Physiol., 271, 817–46PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1984

Authors and Affiliations

  • S. P. Lim
  • T. C. Muir

There are no affiliations available

Personalised recommendations