Advertisement

Electrical Activity of an Intrinsically Denervated Jejunum of the Unanesthetized Rat

  • D. A. Fox
  • M. L. Epstein
  • P. Bass

Abstract

The enteric nerves and their respective mediators have been postulated to be involved in the intestinal intrinsic reflex (1), motility, modulation of intestinal blood flow, water and electrolyte transport, absorption of nutrients, and secretion from endocrine and paracrine cells (review see 2). Selective ablation of different portions of the enteric nervous sytem would facilitate characterization of the function and site of action of both endogenous substances and drugs.

Keywords

Gastrointestinal Motility Myenteric Plexus Benzalkonium Chloride Myenteric Neuron Hypertrophic Pyloric Stenosi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hukuhara, T., Sumi, T., and Kotani, S. (1961). The role of the ganglion cells in the small intestine taken in the intestinal intrinsic reflex. Jap. J. Physiol., 11, 281–88CrossRefGoogle Scholar
  2. 2.
    Costa, M. and Furness, J. B. (1982). Nervous control of intestinal motility. In: Bertaccini, G. (ed). Mediators and Drugs in Gastrointestinal Motility I. pp. 279–382. ( Berlin Heidelberg New York: Springer-Verlag )CrossRefGoogle Scholar
  3. 3.
    Szurszewski, J. and Steggerda, F. R. (1968). The effect of hypoxia on the electrical slow wave of the canine small intestine. Am. J. Dig. Dis., 13, 168–177PubMedCrossRefGoogle Scholar
  4. 4.
    Szurszewski, J. and Steggerda, F. R. (1968). The effect of hypoxia on the mechanical activity of the canine small intestine. Am. J. Dig. Dis. 13, 178–185PubMedCrossRefGoogle Scholar
  5. 5.
    Okamoto, E., Iwasaki, T., Kakutani, T., and Ueda, T. (1967). Selective destruction of the rnyenteric plexus: Its relationshp to Hirschsprung’s disease, achalasia of the esophagus and hypertrophic pyloric stenosis. J. Ped. Surg., 2, 444–454CrossRefGoogle Scholar
  6. 6.
    Imamura, K., Yamamoto, M., Sato, A., Kashiki, Y., and Kunieda, T. (1975). Pathophysiology of aganglionic colon segment: An experimental study on aganglionsis produced by a new method in the rat. J. Ped. Surg., 10, 865–873CrossRefGoogle Scholar
  7. 7.
    Sato, A., Yamamoto, M., Imamura, K., Kashiki, Y., Kunieda, T., and Sakata, K. (1978). Pathophysiology of aganglionic colon and anorectum: An experimental study on aganglionsis produced by a new method in the rat. J. Ped. Surg., 13, 399–405CrossRefGoogle Scholar
  8. 8.
    Sakata, K., Kunieda, T., Furuta, T., and Sato, A. (1979). Selective destruction of intestinal nervous elements by local application of benzalkonium solution in the rat. Experientia, 35, 1611–1612PubMedCrossRefGoogle Scholar
  9. 9.
    Fox, D. A.,, Epstein, M. L., and Bass, P. Surfactants selectively ablate enteric neurons of the rat jejunum. J. Pharmacol. Exp. Ther. In pressGoogle Scholar
  10. 10.
    Nagata, T. and Steggerda, F. R. (1963). Histological study on the deganglionated small intestine of the dog. Physiologist, 6, 242Google Scholar
  11. 11.
    Sarna, S., Stoddard, C., Belbeck, L., and McWade, D. (1981). Intrinsic nervous control of migrating myoelectric complexes. Am. J. Physiol., 241, G16–22PubMedGoogle Scholar
  12. 12.
    Sarna, S., Condon, R. E., and Cowles, V. (1983). Enteric mechanism of initiation of migrating myoelectric complexes in dogs. Gastroenterology, 84, 814–22PubMedGoogle Scholar
  13. 13.
    Heppell, J., Kelly, K., and Sarr, M. (1983). Neural control of canine small intestinal interdigestive myoelectric complexes. Am. J. Physiol., 244, G95 - G100PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1984

Authors and Affiliations

  • D. A. Fox
  • M. L. Epstein
  • P. Bass

There are no affiliations available

Personalised recommendations