Effects of Vagal Deafferentation on Oesophageal Motility in the Conscious Sheep

  • M. Falempin
  • J. P. Rousseau


The pharyngeal and oesophageal stages of swallowing depend on a central pattern generator. This theory has come from the early observation of MOSSO (1876) that primary peristalsis could jump a gap produced by oesophageal transection in dog. More recent studies of the effects of oesophageal transection (CARVETH, SCHLEGEL, CODE and ELLIS, 1962) and demonstration that sequential efferent signals proceed to all oesophageal muscles (ROMAN, 1966; ROMAN and TIEFFENBACH, 1972) support this theory that mammalian nervous control of peristalsis is governed by a central pattern generator. However, the decrease in the number of peristaltic waves observed following deviation of the bolus (JANSSENS, 1978) suggests that control of oesophageal peristalsis depends on peripheral feedback. Direct evidence for oesophageal afferents has come from neural recordings. The passage of a peristaltic wave and distension of the oesophagus elicited discharges in sensory fibres (ANDREW, 1946; MEI, 1970; FALEMPIN, MEI and ROUSSEAU, 1978; FALEMPIN and ROUSSEAU, 1983). In spite of the evidence that swallowing depends on a central pattern generator, peripheral inputs to the medullary centres seem to modify the central neural program. So the contribution of afferents in the control of the swallowing centre could be evaluated if the contingent of sensory fibres alone was cut in both vagus nerves. The surgical isolation of the vagal sensory fibres is actually possible at the level of the nodose ganglion in sheep. However as cutting both ganglia, leaving the bundles of motor fibres intact, is followed by death of the sheep in most cases, section of one vagus nerve was associated in the present work with division of the nodose ganglion of the contralateral nerve to test the effects of vagal deafferentation on electromyographic oesophageal activity and transit of a bolus.


Vagus Nerve Gastrointestinal Motility Central Pattern Generator Thoracic Oesophagus Peristaltic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrew, B.L. (1956). The nervous control of cervical oesophagus of the rat. J. Phyhia. (London). 134, 729–740.Google Scholar
  2. 2.
    Carveth, S.W., Schlegel, J.F., Code, C.F. and Ellis, F.H. (1962). Esophageal motility after vagotomy, phrenicotomy, myotomy and myosnectomy in dogs. Sung. Gynacol. Obbtnt., 114, 31–42.Google Scholar
  3. 3.
    Darcy, B., Falempin, M., Laplace, J.P. and Rousseau, J.P. (1979). Importance de la voie vagale sensitive: recherche d’une technique de déafferentation sélective chez le Porc et le Mouton. Ann. Biot. anim., Bioch., Biophys., 19, 881–888.CrossRefGoogle Scholar
  4. 4.
    Falempin, M., Mei, N. and Rousseau, J.P. (1978). Vagal mechanoreceptors of the inferior thoracic oesophagus, the lower oesophageal sphincter, and the stomach in sheep. Pseügens Anch., 373, 25–30.Google Scholar
  5. 5.
    Falempin, M. and Rousseau, J.P. (1979). Vagal digestive deafferentation in sheep. Ann. Rech. Vet., 10, 186–188.PubMedGoogle Scholar
  6. 6.
    Falempin, M. and Rousseau, J.P. (1983). Reinnervation of skeletal muscles by vagal sensory fibres in the sheep, cat and rabbit. J. Phyhiot. (London)., 335, 467–479.Google Scholar
  7. 7.
    Falempin, M. and Rousseau, J.P. (1983). Activity of lingual, laryngeal and oesophageal receptors in conscious sheep. In press.Google Scholar
  8. 8.
    Janssen, J. (eds) (1978). The peristaltic mechanism of the oesophagus. Acco, Lewen, cited by Roman, C. and Gonella, J. in Physiology of the gastnointes inal tnact (1981). L.R. Johson Ed. Raven Press, New-York, p. 297.Google Scholar
  9. 9.
    Jean, A. (1972). Localisation et activité des neurones déglutiteurs bulbaires. J. Phyziol. (Panis)., 64, 227–268.Google Scholar
  10. 10.
    Jean, A. (1978). Contrôle bulbaire de la déglutition et de la motricité oesophagienne. Thêse. Doct. es-Sciences Marseille.Google Scholar
  11. 11.
    Mei, N. and Dussardier, M. (1966). Etude des lésions pulmonaires produites par la section des fibres sensitives vagales. J. Physiol. (Panis)., 58, 427–431.Google Scholar
  12. 12.
    Mei, N. (1970). Mécanorécepteurs digestifs chez le chat. Exp. Bnain. Reis. 11, 502–514.Google Scholar
  13. 13.
    Mosso, A. (1876). Ueber die Bewegungen der Speiseröhre. Untensuth. Z. Natun., 11, 327–349.Google Scholar
  14. 14.
    Rech, R.H. (1966). The fiber component of the midcervical vagus nerve implicated in vagotomy inducted lung edema. Expen. Neunol., 14, 475–483.CrossRefGoogle Scholar
  15. 15.
    Roman, C. (1966). Contrôle nerveux du péristaltisme oesophagien. J. Physiol. (Panis)., 58, 79–108.Google Scholar
  16. 16.
    Roman, C. and Tieffenbach, L. (1972). Enregistrement de l’activité unitaire des fibres motrices vagales destinées à l’oesophage de babouin. J. Physiol. (Panis)., 64, 479–506.Google Scholar

Copyright information

© MTP Press Limited 1984

Authors and Affiliations

  • M. Falempin
  • J. P. Rousseau

There are no affiliations available

Personalised recommendations