A “Hot” Ground State Intermediate in the Photohydration of Pyrimidines

  • Shih Yi Wang
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 10)


Because the theme of this symposium concerns the excited state molecular species in organic and biochemistry and because you, the participants, are experts from diversified disciplines, this symposium provides an ideal forum for the discussion of a “hot” ground state intermediate in the photohydration of pyrimidines (Pyr). This is an issue which has confronted our laboratory ever since 1956. The general belief has been that the lifetime of a vibrationally excited or “hot” ground state Pyr (VPyro) is too short (~10−12 sec) for a photoreaction to take place. However, favorable evidence accumulated from our laboratory, as well as from others, has been considerable. Recently, this proposition has met with approval in the latest comprehensive review of Pyr photohydrates (Fisher and Johns, 1976). Therefore, first, I would like to discuss the nature of this photoreaction, second, the early background that led to my proposal, and third, the experimental findings which may be interpreted as being in favor of this proposal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I.H. Brown, and H.E. Johns (1968) Photochem. Photobiol. 8 273.CrossRefGoogle Scholar
  2. T.C. Bruice, and A.R. Butler (1965) Fed. Proc., Fed. Amer. Soc. Exp. Biol. 24, S-45.Google Scholar
  3. J.G. Burr, and E.H. Park (1967) Radiat. Res. 31, 547.Google Scholar
  4. J.G. Burr, and E.H. Park (1968) Photochem. Photobiol. 81, 418.Google Scholar
  5. J.G. Burr, E.H. Park, and A. Chan (1972) J. Amer. Chem. Soc. 94, 5866.CrossRefGoogle Scholar
  6. J.G. Burr, C. Gilligan, and W.A. Summers (1976) Photochem. Photobiol. 24, 483.CrossRefGoogle Scholar
  7. V.I. Danilov (1967) Photochem. Photobiol. 6, 233.CrossRefGoogle Scholar
  8. G. DeBoer, and H.E. Johns (1970) Biochim. Biophys. Acta 204, 18.CrossRefGoogle Scholar
  9. J. Eisinger, and A.A. Lamola (1967) Biochem. Biophys. Res. Commun. 28, 558.CrossRefGoogle Scholar
  10. G.J. Fisher, and H.E. Johns (1976) in “Photochemistry and Photobiology of Nucleic Acids. Chemistry” Vol. 1, Chap. 4, ed. S.Y. Wang, Academic Press, New York, N.Y. p. 169.CrossRefGoogle Scholar
  11. C.L. Greenslock, I.H. Brown, J.W. Hunt, and H.E. Johns (1967) Biochem. Biophys. Res. Commun. 27, 431.CrossRefGoogle Scholar
  12. C.L. Greenstock, and H.E. Johns (1968) Biochem. Biophys. Res. Commun. 30, 21.CrossRefGoogle Scholar
  13. W. Guschlbauer, A. Favre, and A.M. Michelson (1965) Z. Naturforsch. B20, 1141.Google Scholar
  14. A. Haug, and S.Y. Wang (1962) Experiments carried out at the University of Köln, Germany.Google Scholar
  15. W.W. Hauswirth, and M. Daniels (1971) Chem. Phys. Lett. 10, 140.CrossRefGoogle Scholar
  16. W.W. Hauswirth, and S.Y. Wang (1977) Photochem. Photobiol. (in press). W.W. Hauswirth, and S.Y. Wang (1974) 2nd Annual Meeting of the Amer. Soc. Photobiol., Vancouver, B.C., Canada, July 1974.Google Scholar
  17. W.W. Hauswirth, B.S. Hahn, and S.Y. Wang (1972) Biochem. Biophys. Res. Commun. 48, 1614.CrossRefGoogle Scholar
  18. M. Kasha (1960) in “Comparative Effects of Radiation” ed. M. Burton, J.S. Kirby-Smith, and J.L. Magee, Wiley, N.Y. p. 72.Google Scholar
  19. M.N. Khattak, W.W. Hauswirth, and S.Y. Wang (1972) Biochem. Biophys. Res. Commun. 48, 1622.CrossRefGoogle Scholar
  20. A.A. Lamola, and J.P. Mittal (1966) Science 154, 1560.CrossRefGoogle Scholar
  21. J.P. Malrieu (1967) C.R. Acad. Sci., Ser. D264, 662.Google Scholar
  22. T. Montenay-Garestier, M. Charlier, and C. Helene (1976) in “Photochemistry and Photobiology of Nucleic Acids. Chemistry” Vol. 1, Chap. 8, ed. S.Y. Wang, Academic Press, N.Y. p. 382.Google Scholar
  23. A.M. Moore (1959) Can. J. Chem. 317, 1281.CrossRefGoogle Scholar
  24. A.M. Moore, and C.H. Thomson (1955) Science 122, 594.CrossRefGoogle Scholar
  25. J.C. Nnadi (1968) Ph.D. Thesis, Johns Hopkins University, Baltimore, Maryland.Google Scholar
  26. R.E. Pincock (1969) Account. Chem. Res. 2, 97.CrossRefGoogle Scholar
  27. D. Shugar, and K.L. Wierzchowski (1957) Biochem. Biophys. Acta 9, 199.CrossRefGoogle Scholar
  28. R.L. Sinsheimer (1954) Radiat. Res. JL, 505.Google Scholar
  29. R.L. Sinsheimer, and R. Hastings (1949) Science 110, 525.CrossRefGoogle Scholar
  30. W.A. Summers, Jr., C. Enwall, J.G. Burr, and R.L. Letsinger (1973) Photochem. Photobiol. 17, 295.CrossRefGoogle Scholar
  31. A. Wacker, H. Dellweg, L. Träger, A. Kornhauser, E. Lodemann, G. Turck, R. Selzer, P. Chandra, and M. Ishimoto (1964) Photochem. Photobiol. 3, 369.CrossRefGoogle Scholar
  32. S.Y. Wang (1958) J. Amer. Chem. Soc. 80, 6196.CrossRefGoogle Scholar
  33. S.Y. Wang (1959) Nature (London) 184, 184.CrossRefGoogle Scholar
  34. S.Y. Wang (1961) Nature (London) 190, 690.CrossRefGoogle Scholar
  35. S.Y. Wang (1962) Photochem. Photobiol. 19 135.CrossRefGoogle Scholar
  36. S.Y. Wang (1965) Fed. Proc., Fed. Amer. Soc. Exp. Biol. 24, S-71.Google Scholar
  37. S.Y. Wang (1976a) in Photochemistry and Photobiology of Nucleic Acids. Chemistry, Vol. 1, Chap. 6, ed. S.Y. Wang, Academic Press, N.Y., p. 295.Google Scholar
  38. S.Y. Wang (1976b) ibid., Chap 1, p. 1.Google Scholar
  39. S.Y. Wang, and J.C. Nnadi (1968) Chem. Commun. p. 1160.Google Scholar
  40. S.Y. Wang, M. Apicella, and B.R. Stone (1956) J. Amer. Chem. Soc. 78, 4180.CrossRefGoogle Scholar
  41. A. Weiler (1961) Progr. React. Kinet., 1, 189.Google Scholar
  42. D.G. Whitten, J.W. Hopp, G.L.B. Carlson, and M.T. McCall (1970) J. Amer. Chem. Soc. 92, 3499.CrossRefGoogle Scholar
  43. H.E. Zimmerman (1963) Adv. Photochem. 1, 183.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  • Shih Yi Wang
    • 1
  1. 1.School of Hygiene and Public Health, Division of Radiation Chemistry, Department of BiochemistryThe Johns Hopkins UniversityUSA

Personalised recommendations