Advertisement

Non-Adiabatic Interactions in the Unimolecular Decay of Polyatomic Molecules

  • J. C. Lorquet
  • C. Galloy
  • M. Desouter-Lecomte
  • M. J. Decheneux
  • D. Dehareng
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 10)

Abstract

It is well-known that intersections, or avoided intersections between potential energy hypersurfaces play an important role in the interpretation of photochemical processes (1). In such regions of space, the Born-Oppenheimer approximation breaks down and the behavior of the system is no longer determined by the usual potential energy surfaces (in the Born-Oppenheimer sense), i.e. by the eigenvalues of the electronic hamiltonian. A coupling between (or among) energy surfaces takes place. Several methods are available to calculate the transition probabilities between them. Since the case of polyatomic molecules is fairly complicated, we shall restrict ourselves to the simplest method, called the semi-classical approximation (2) : the nuclear motion is described by a classical trajectory, whereas the electronic motion is treated quantum-mechanically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.Michl, Topics in Current Chemistry, 46, 1 (1974). L.Salem, J.Am.Chem.Soc., 96, 3486 (1974). L.Salem, C.Leforestier, G.Segal and R.Wetmore, J.Am.Chem.Soc., 97,479 (1975). W.G.Dauben, L.Salem and N.J.Turro, Acc.Chem.Res., 8, 41 (1975).Google Scholar
  2. 2.
    H.Hellmann and J.K.Syrkin, Acta Physicochim.URSS, 2, 433 (1935). E. E.Nikitin, in Chemische Elementarprozesse, ed.H.Hartmann (Springer, Berlin, 1968). M.Desouter-Lecomte, J.C.Leclerc and J.C.Lorquet, Chem.Phys., 9, 147 (1975).Google Scholar
  3. 3.
    W.Lichten, Phys.Rev., 131, 229 (1963). F. T.Smith, Phys.Rev., 179, 111 (1969). V.Sidis and H.Lefebvre-Brion, J.Phys., B 4, 1040 (1971). T.F.O’Malley, Adv.Atom.Mol.Phys., 7, 223 (1971).CrossRefGoogle Scholar
  4. 4.
    C.Galloy and J.C.Lorquet, to be published.Google Scholar
  5. 5.
    M.Desouter-Lecomte and J.C.Lorquet, J.Chem.Phys., (in press).Google Scholar
  6. 6.
    B.Corrigall, B.Küppers and R.Wallace, Phys.Rev., A 4, 977 (1971). J.C.Tully, J.Chem.Phys., 60, 3042 (1974).CrossRefGoogle Scholar
  7. 7.
    R.K.Preston and J.C.Tully, J.Chem.Phys., 54, 4297 (1971).CrossRefGoogle Scholar
  8. 8.
    J.C.Tully and R.K.Preston, J.Chem.Phys., 55, 562 (1971).CrossRefGoogle Scholar
  9. 9.
    J.R.Stine and J.T.Muckerman, J.Chem.Phys., 65, 3975 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  • J. C. Lorquet
    • 1
  • C. Galloy
    • 1
  • M. Desouter-Lecomte
    • 1
  • M. J. Decheneux
    • 1
  • D. Dehareng
    • 1
  1. 1.Institut de Chimie de l’Université de LiègeSart Tilman, Liège 1Belgium

Personalised recommendations