Chemical Production of Excited States: Adventitious Biological Chemiluminescence of Carcinogenic Polycyclic Aromatic Hydrocarbons

  • H. H. Seliger
  • J. P. Hamman
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 10)


The chemical production of electronically excited states in biological systems falls into several categories. The first and most prominent is Bioluminescence, a late evolutionary selection for “luciferase”-catalyzed monooxygenations of “luciferin” substrates to produce light for signalling with efficiencies (photons emitted per substrate molecule reacted) close to 100% [1], Second is the delayed luminescence of pre-illuminated chloroplasts at times (10−5 sec to 104 sec) too long for the process to be a primary fluorescence or slow fluorescence [2,3]. Delayed luminescence is thought to be the result of a back reaction (recombination) of photoreactants within the thylacoid that have undergone charge separation due to the primary illumination [3,4], and is, like the in vivo fluorescence of chlorophyll, non-functional. The third category which we have termed Adventitious Biological Chemiluminescence, ABC, is a non-functional, non-enzymatic light emission that occurs fortuitously and with low probability during aerobic metabolism. The literature is replete with observations, from the work of Gurwitsch beginning in the 1920’s through the present, of ABC emitted from whole tissues, from isolated cells and cell homogenates, from microsomal extracts and from purified flavoprotein oxidases and peroxidases [5–12].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seliger, H. H. (1975) Photochem. Photobiol. 21: 355.CrossRefGoogle Scholar
  2. 2.
    Strehler, B. and Arnold, W. (1951) J. Gen. Physiol. 34: 809.CrossRefGoogle Scholar
  3. 3.
    Arnold, W. and Azzi, J. (1971) Photochem. Photobiol. 14: 233.CrossRefGoogle Scholar
  4. 4.
    Kraan, G. P. B., Amesz, J., Velthuys, B. R. and Steemers, R. G. (1970) Biochem. Biophys. Acta 223: 129.Google Scholar
  5. 5.
    DeMent, J. (1945) Fluorochemistry. Chemical Pub. Co., New York.Google Scholar
  6. 6.
    Barenboim, G. M., Domanskii, A. N. and Turoverov, K. K. (1969) Luminescence of Biopolymers and Cells. Plenum Press, New York.CrossRefGoogle Scholar
  7. 7.
    Quickenden, T. I. and Que Hee, S. S. (1974) Biochem. Biophys. Res. Commun. 60: 764.CrossRefGoogle Scholar
  8. 8.
    Stauff, J. and Wolf, H. (1964) Z. Naturforsch. 19B: 87.Google Scholar
  9. 9.
    Stauff, J. and Ostrowski, J. (1967) Z. Naturforsch. 226: 734.Google Scholar
  10. 10.
    Howes, R. M. and Steele, R. H. (1971) Res. Commun. Chem. Pathol. Pharmacol. 2:619; ibid (1972) 3:349.Google Scholar
  11. 11.
    Arneson, R. M. (1970) Arch. Biochem. Biophys. 136: 352.CrossRefGoogle Scholar
  12. 12.
    Hodgson, E. K. and Fridovich, I. (1976) Arch. Biochem. Biophys. 172: 202.CrossRefGoogle Scholar
  13. 13.
    Totter, J. R., Medina, V. J. and Scoseria, J. L. (1969) J. Biol. Chem. 235: 238.Google Scholar
  14. 14.
    Totter, J. R., di Gros, E. D. and Riveiro, C. (1969) J. Biol. Chem. 235: 1839.Google Scholar
  15. 15.
    Greenlee, L., Fridovich, I. and Handler, P. (1962) Biochem. 1: 779.CrossRefGoogle Scholar
  16. 16.
    Fridovich, I. and Handler, P. (1962) J. Biol. Chem. 237: 916.Google Scholar
  17. 17.
    Kellogg, E. W. III and Fridovich, I. (1975) J. Biol. Chem. 250: 8812.Google Scholar
  18. 18.
    Seliger, H. H. (1975) Fed. Proc. 34: 623.Google Scholar
  19. 19.
    Hamman, J. P. and Seliger, H. H. (1976) Biochem. Biophys. Res. Commun. 70: 675.CrossRefGoogle Scholar
  20. 20.
    Seliger, H. H. and Hamman, J. P. (1976) J. Phys. Chem. 80: 2296.CrossRefGoogle Scholar
  21. 21.
    Hamman, J. P. and Seliger, H. H. (1977) Biochem. Biophys. Res. Commun. (1977) in press.Google Scholar
  22. 22.
    Newbold, R. F. and Brookes, P. (1976) Nature 261: 52.CrossRefGoogle Scholar
  23. 23.
    Wislocki, P. G., Wood, A. W., Chang, R. L., Levin, W., Yagi, H., Hernandez, O., Jerina, D. M. and Conney, A. H. (1976) Biochem. Biophys. Res. Commun. 68: 1006.CrossRefGoogle Scholar
  24. 24.
    Huberman, E., Sachs, L., Yang, S. K. and Gelboin, H. V. (1976) Proc. Nat. Acad. Sci. U.S.A. 73: 607.Google Scholar
  25. 25.
    Miller, J. A. and Miller, E. C. (1971) J. Nat. Cancer Inst. 47: V–XIV.Google Scholar
  26. 26.
    Ames, B. N., Durston, W. E., Yamasaki, E. and Lee, F. D. (1973) Proc. Nat. Acad. Sci. U.S.A. 70: 2281.CrossRefGoogle Scholar
  27. 27.
    Schmidt, O. (1939) Z. physikal. Chemie (B) 42:83; 44:194.Google Scholar
  28. 28.
    Pullman, A. and Pullman, B. (1955) Adv. Cancer Res. 3:117; (1969) in The Jerusalem Symposia on Quantum Chemistry and Biochemistry Vol. 1. eds. E. D. Bergmann and B. Pullman. Academic Press, N. Y. p. 9.Google Scholar
  29. 29.
    Grover, P. L. and Sims, P. (1968) Biochem. J. 110: 159.Google Scholar
  30. 30.
    Gelboin, H. V. (1969) Cancer Res. 29: 1272.Google Scholar
  31. 31.
    Ts1o, P. 0. P., Caspary, W. J., Cohen, B. I., Leavitt, J. C., Lesko, S. A., Lorentzen, R. J. and Schechtman, L. M. (1974) in “Chemical Carcinogenesis, Part A” eds. Tsfo, P. 0. P. and Di Paolo, J. A. Marcel Dekker, New York. p. 113.Google Scholar
  32. 32.
    Svartholm, N. (1941) Arkiv. Kemi. Min. Geol. A15 No. 13.Google Scholar
  33. 33.
    Badger, G. M. (1949) J. Chem. Soc. 456, 1909.Google Scholar
  34. 34.
    Badger, G. M. (1950) J. Chem. Soc. 1726, 1809.CrossRefGoogle Scholar
  35. 35.
    Buu-Hoi, N. P., Daudel, P., Daudel, R., Lacassagne, A., Lecocq, J., Martin, M. and Rudali, G. (1947) C. R. Acad. Sci. Paris 225: 238.Google Scholar
  36. 36.
    Daudel, P. and Daudel, R. (1950) Biol. Med. 39: 201Google Scholar
  37. 37.
    Epstein, S. S., Small, M., Falk, H. L. and Mantel, N. (1964) Cancer Res. 24: 855.Google Scholar
  38. 38.
    Small, M., Mantel, N. and Epstein, S. S. (1967) Exp. Cell Res. 45: 206.CrossRefGoogle Scholar
  39. 39.
    Mailing, H. V. and Chu, E. H. Y. (1970) Cancer Res. 30: 1236.Google Scholar
  40. 40.
    Santamaria, L. and Prino, G. (1964) in Res. Prog, in Org. Biological and Med. Chem. eds. Gallo, V. and Santamaria, L. Societa Editoriale Farmaceutica, Milano. p. 259.Google Scholar
  41. 41.
    Birks, J. B. (1959) in “General Discussion” Discussions Faraday Soc. 27: 232.Google Scholar
  42. 42.
    Anderson, W. (1947) Nature (London) 160: 892.CrossRefGoogle Scholar
  43. 43.
    Selkirk, J. K., Croy, R. G. and Gelboin, H. V. (1974) Science 184:169; (1975) Arch. Biochem. Biophys. 168: 322.CrossRefGoogle Scholar
  44. 44.
    Jerina, D. M. Lehr, P. E., Yagi, H., Hernandez, 0., Dansette, P., Wislocki, P. G., Wood, A. W., Chang, R. L., Levin, W. and Conney, A. H. (1976) in “In Vitro Activation in Mutagenesis Testing” eds. De Seres, F. J., Bond, J. R. and Philpot, R. M. Elsevier, Amsterdam.Google Scholar
  45. 45.
    Sims, P., Grover, P. L., Swaisland, A., Pal, K. and Hewer, A. (1974) Nature (London) 252: 326.CrossRefGoogle Scholar
  46. 46.
    Dipple, A. (1976) “Polynuclear Aromatic Carcinogens” in Chemical Carcinogens, ed. Searle, C. E., ACS Monograph 173, ACS, Washington, D. C. p. 245.Google Scholar
  47. 47.
    Morgan, D. D. Warshawsky, D. and Atkinson, T. (1977) Photochem. Photobiol. 25: 31.CrossRefGoogle Scholar
  48. 48.
    Morgan, D. I. and Warshawsky, D. (1977) Photochem. Photobiol. 25: 39.CrossRefGoogle Scholar
  49. 49.
    Seliger, H. H. (1973) in “Chemiluminescence and Bioluminescence” eds. Cormier, M. J., Hercules, D. M., and Lee, J. Plenum Press, N. Y. p. 461.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  • H. H. Seliger
    • 1
  • J. P. Hamman
    • 1
  1. 1.McCollum-Pratt InstituteThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations