Excited States of Chiral Pyrazines

  • Günther Snatzke
  • György Hajós
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 10)


Absorption spectroscopy is one of the most used methods for investigation of the excited states of molecules. Although it is an extremely powerful tool for this purpose, it nevertheless has the disadvantage that weak bands — at least when recorded in solution — are in general not clearly discernible if they appear close to a strong band. A combination of this “isotropic” absorption measurements with that of the Circular Dichroism (CD) can often be of great help; especially the utilization of the so-called “g-factor” has been advocated by MASON (2) but this is still very seldom done. We would like to show here hew this combination of UV- and CD-spectroscopy can be successfully used in assigning symmetry labels to four excited states of pyrazines. The preparative work, determination of the absolute configuration, and part of the CD-evidence has recently been published by us (3).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. (1).
    Fellow of the A.-v.-Humboldt-Stiftung 1974/5 at Bochum. Permanent address: Central Chemical Research Institutes of the Hungarian Academy of Sciences, Budapest.Google Scholar
  2. (2).
    S.F. Mason, Quarterly Rev. 17, 20 (1963).CrossRefGoogle Scholar
  3. (3).
    G. Snatzke and Gy. Hajós, Heterocycles 5, 299 (1976).CrossRefGoogle Scholar
  4. (4).
    A. Moscowitz, Tetrahedron 13, 48 (1961).CrossRefGoogle Scholar
  5. G. Snatzke and L. Vértesy, Monatsh. f.Chem. 98, 121 (1967).CrossRefGoogle Scholar
  6. (6).
    Badruddin, Thesis, Bochum (1975).Google Scholar
  7. (7).
    G. Snatzke and G. Eckhardt, Tetrahedron 24, 4543 (1968).CrossRefGoogle Scholar
  8. (8).
    G. Snatzke and J. Himmelreich, Tetrahedron 23, 4337 (1967).CrossRefGoogle Scholar
  9. (9).
    J.D. Petke, J.L. Whitten, and J.A. Ryan, J.Chem.Phys. 48, 953 (1968).CrossRefGoogle Scholar
  10. (10).
    M. Hackmeyer and J.L. Whitten, J.Chem.Phys. 54, 3739 (1971).CrossRefGoogle Scholar
  11. (11).
    W.R. Wadt and W.A. Goddard III, J.Amer.Chem.Soc. 97, 2034 (1975).CrossRefGoogle Scholar
  12. (12).
    R. Gleiter, E. Heilbronner, and V. Hornung, Helv.Chim.Acta 55, 255 (1972).CrossRefGoogle Scholar
  13. (13).
    K.K. Innes, J.P. Byrne, and I.G. Ross, J.Mol. Spect. 22, 125 (1967).CrossRefGoogle Scholar
  14. (14).
    M.N. Pisanias, L.G. Christophorou, J.G. Carter, and D.L. Mc Corkle, J.Chem.Phys. 58, 2110 (1973).CrossRefGoogle Scholar
  15. (15).
    H. Smith and A.A. Hicks, Chem.Comnun. 1112 (1970).Google Scholar
  16. (16).
    H. Rau, O. Schuster, and A. Bacher, J.Amer.Chem.Soc. 96, 3955 (1974).CrossRefGoogle Scholar
  17. (17).
    G. Snatzke and P.C. Ho, Tetrahedron 27, 3645 (1971).CrossRefGoogle Scholar
  18. (18).
    J.A. Schellman, J.Chem.Phys. 44, 55 (1966).CrossRefGoogle Scholar
  19. (19).
    C. Djerassi and W. Klyne, Proc.Natl.Acad.Sci.U.S.A. 48, 1093 (1962).CrossRefGoogle Scholar
  20. (20).
    G. Snatzke, Angew. Chemie, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  • Günther Snatzke
    • 1
  • György Hajós
    • 1
    • 2
  1. 1.Lehrstuhl für StrukturchemieRuhruniversitätBochum 1Germany
  2. 2.Central Chemical Research Institutes of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations