Advertisement

Electronic Structure and Photophysical Properties of Planar Conjugated Hydrocarbons with a 4n-Membered Ring

  • Jakob Wirz
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 10)

Summary

The electronic absorption spectra of compounds 3 to 8 exhibit systematic features which differ radically from the well known pattern of benzenoid hydrocarbons. The observed regularities are discussed on the basis of a simple LCAO-scheme including first-order configuration interaction. The resulting assignments have been corroborated by polarization measurements for to 5 to 7. Triplet state absorption spectra and energies of 6 to 8 were determined by flash photolysis and energy transfer experiments. The observed trend in fluorescence and triplet yields provides an illustrative example for the photophysical consequences of an avoided surface crossing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Wirz, Helv. Chim. Acta 59, 1647 (1976).CrossRefGoogle Scholar
  2. [2]
    R.M. Hochstrasser & R.D. McAlpine, J. Chem. Phys. 44, 3325 (1966) and references therein.CrossRefGoogle Scholar
  3. [3]
    N.S. Hush & J.R. Rowlands, Mol. Phys. 6, 317 (1963) F. Peradejordi, R. Domingo & J.I. Fernández-Alonso, Int. J. Quantum Chem. 3, 683 (1969); P. Francois, J. Chim. Phys. Fr. 67, 1063 (1970).Google Scholar
  4. [4]
    J.R. Platt, J. Chem. Phys. 17, 484 (1949).CrossRefGoogle Scholar
  5. [5]
    E. Ciar, Aromatische Kohlenwasserstoffe, Springer-Verlag (1952).Google Scholar
  6. [6]
    G.M. Pilling & F. Sondheimer, J. Amer. Chem. Soc. 93, 1970 (1971).CrossRefGoogle Scholar
  7. [7]
    R. Wolovsky & F. Sondheimer, J. Amer. Chem. Soc. 87, 5720 (1965), “isomer B” corresponds to 4; see also UV-Atlas of Organic Compounds, Vol. V, Butterworths & Verlag Chemie (1971).Google Scholar
  8. [8]
    H.N.C. Wong, P.J. Garratt & F. Sondheimer, J. Amer. Chem. Soc. 96, 5604 (1974).CrossRefGoogle Scholar
  9. [9]
    O.M. Behr, G. Eglinton, A.R. Galbraith & R.A. Raphael, J. Chem. Soc. 1960, 3614.Google Scholar
  10. [10]
    H.A. Staab & F. Graf, Chem. Ber. 103, 1107 (1970).CrossRefGoogle Scholar
  11. [11]
    M.J.S. Dewar & H.C. Longuet-Higgins, Proc. Phys. Soc. (London) A67, 795 (1954).CrossRefGoogle Scholar
  12. [12]
    C.A. Coulson & G.S. Rushbrooke, Proc. Cambridge Phil. Soc. 36, 193 (1940) see e.g. L. Salem, Molecular Orbital Theory of Conjugated Systems, Benjamin (1966).Google Scholar
  13. [13]
    E. Rommel & J. Wirz, Helv. Chim. Acta, in preparation.Google Scholar
  14. [14]
    R. Pariser, J. Chem. Phys. 24, 250 (1956).CrossRefGoogle Scholar
  15. [15]
    J. Michl, E.W. Thulstrup & J.H. Eggers, Ber. Bunsenges. 78, 575 (1974).Google Scholar
  16. [16]
    C. Tetreau, D. Lavalette, E.J. Land & F. Peradejordi, Chem. Phys. Letters 17, 245 (1972).CrossRefGoogle Scholar
  17. [17]
    H. Shizuka, T. Ogiwara, S. Cho & T. Morita, Chem. Phys. Letters 42, 311 (1976) and references therein.CrossRefGoogle Scholar
  18. [18]
    P.M. Rentzepis, Science 169, 239 (1970).CrossRefGoogle Scholar
  19. [19]
    J.D. Campbell, G. Eglinton, W. Henderson & R.A. Raphael, Chem. Commun. 1966, 87.Google Scholar
  20. [20]
    G. Porter & M.W. Windsor, Proc. Roy. Soc. (London) A245, 238 (1958).CrossRefGoogle Scholar
  21. [21]
    L. Salem, C. Leforestier, G. Segal & R. Wetmore, J. Amer. Chem. Soc. 97, 479 (1975).CrossRefGoogle Scholar
  22. [22]
    R.J. Buenker & S.D. Peyerimhoff, J. Chem. Phys. 413, 354 (1968); G. Binsch, Jerusalem Symposia on Quantum Chemistry and Biochemistry, Vol. Ill, 25 (1971).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  • Jakob Wirz
    • 1
  1. 1.Physikalisch-chemisches Institut der UniversitätBaselSwitzerland

Personalised recommendations