Advertisement

Chiroptical Probes of Protein Structure

  • Thomas M. HookerJr.
  • Warren J. Goux
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 10)

Abstract

Although x-ray diffraction studies of crystals is the definitive technique for the investigation of molecular structure in the solid state, it is certainly possible, even probable, that there are significant differences in the microscopic structure of protein molecules in the solid state and in solution. Even though it may be unlikely that significant deviations occur in the path of the polypeptide chain it is likely that the conformations of certain amino acid side chains, especially those on the surface, may vary significantly in the two states. Since it is the side chains that constitute the functional portions of enzyme molecules insofar as biological activity is concerned, this is a problem of considerable significance. The recent discovery that lysozyme can be crystallized in at least two different forms (l–3), and Vallee’s (4) results which indicate a conformational change of a tyrosine residue when crystalline carboxypeptidase is dissolved may be taken as evidence supportive of this point of view.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. C. F. Balke, G. A. Mair, A. C. T. North, D. C. Phillips and V. R. Sarma, Proc. Roy. Soc., B167, 365 (1967).CrossRefGoogle Scholar
  2. 2.
    K. Kurachi, L. C. Sieker and L. H. Jensen, J. Mol. Biol., 101, 11 (1976).CrossRefGoogle Scholar
  3. 3.
    J. Mault, A. Yanath, W. Traub, A. Smilansky, A. Podjorny, D. Rabinovich and A. Saya, J. Mol. Biol., 100, 179 (1976).CrossRefGoogle Scholar
  4. 4.
    B. L. Vallee, J. F. Riordan, J. T. Johansen and D. M. Livingston, “Cold Spring Harbor Symposia on Quantitative Biology”, XXXVI, Cold Spring Harbor Laboratory, 1972, p. 517.Google Scholar
  5. 5.
    P. M. Bayley, E. B. Nielsen and J. A. Schellman, J. Phys. Chem., 73, 228 (1969).CrossRefGoogle Scholar
  6. 6.
    J. A. Schellman, personal communication.Google Scholar
  7. 7.
    E. U. Condon, W. Altar and H. Eyring, J. Chem. Phys., 5, 753 (1937).CrossRefGoogle Scholar
  8. 8.
    J. G. Kirkwood, J. Chem. Phys., 5, 479 (1937).CrossRefGoogle Scholar
  9. 9.
    W. Kuhn in “Stereochimie”, K. Freudenberg, Ed., Deuticke, Leipzig, 1933, p. 317.Google Scholar
  10. 10.
    W. Moffitt, J. Chem. Phys., 25, 567 (1956).Google Scholar
  11. 11.
    T. M. Hooker, Jr., P. M. Bayley, W. Radding and J. A. Schellman, Biopolymers, 13, 549 (1974).CrossRefGoogle Scholar
  12. 12.
    J. W. Snow and T. M. Hooker, Jr., J. Amer. Chem. Soc., 97, 3506 (1975).CrossRefGoogle Scholar
  13. 13.
    P. E. Grebow and T. M. Hooker, Jr., Biopolymers, 14, 1863 (1975).CrossRefGoogle Scholar
  14. 14.
    W. J. Goux, T. R. Kadesch and T. M. Hooker, Jr., Biopolymers, 15, 977 (1976).CrossRefGoogle Scholar
  15. 15.
    W. J. Goux and T. M. Hooker, Jr., J. Amer. Chem. Soc., 97, 1605 (1975).CrossRefGoogle Scholar
  16. 16.
    R. Diamond, J. Mol. Biol., 82, 571 (1974)CrossRefGoogle Scholar
  17. 17.
    R. W. Woody, Tetrahedron, 29, 1273 (1973).CrossRefGoogle Scholar
  18. 18.
    K. Ikeda and K. Hamaguchi, J. Biochem. (Tokyo), 71, 265 (1972).Google Scholar
  19. 19.
    J. P. Halper, N. Latovitzki, H- Bernstein and S. Beychock, Proc. Natl. Acad. Sci. U.S., 68, 517 (l97l).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  • Thomas M. HookerJr.
    • 1
  • Warren J. Goux
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations