Advertisement

Spline Blended Approximation of Multivariate Functions

  • Charles Hall
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 49)

Abstract

Spline and polynomial blended approximants to a multivariate function are synthesized from approximations to univariate samplings of the function. General algebraic and analytic properties of blended and tensor product interpolants are reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Birkhoff and C. DeBoor, “Piecewise Polynomial Interpolation and Approximation,” in Approximation Functions, H. Garabedian, ed., 164–190 Amsterdam, Elsevier, 1965.Google Scholar
  2. 2.
    R. E. Carlson and C. A. Hall, “Error Bounds for Bicubic Spline Interpolation,” J. Approx. Theory, 7, 41–47, (1973).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    J. C. Cavendish, W. J. Gordon, and C. A. Hall, “Ritz-Galerkin Approximations in Blending Function Spaces,” Numer, Math., 26, 155–178 (1976).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    C. DeBoor, “Bicubic Spline Interpolation,” J. Math, and Phys., 41, 212–218, (1962).MathSciNetGoogle Scholar
  5. 5.
    W. J. Gordon, “Spline-Blended Surface Interpolation Through Curve Networks,” J. Math. Mech., 10, 931–952, (1968).Google Scholar
  6. 6.
    W. J. Gordon, “Distributive Lattices and the Approximation of Multivariate Functions,” in Approximation with Special Emphasis on Spline Functions, 223–277, I. J. Schoenberg, ed., New York, Academic Press, 1969.Google Scholar
  7. 7.
    W. J. Gordon and C. A. Hall, “Transfinite Element Methods: Blending-Function Interpolation Over Curved Element Domains,” Numer. Math. 21, 109–129, (1973).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    C. A. Hall, “Transfinite Interpolation and Applications to Engineering Applications,” in Theory of Approximation with Applications, eds., A. Law and B. Sahney, Academic Press, 1976.Google Scholar
  9. 9.
    M. Schultz and R. S. Varga, “L-splines,” Numer. Math., 10, 345–369, (1967).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    M. Schultz, “L°°-multivariate Approximation Theory,” SIAM J. Numer. Analysis, 6, 161–183, (1969).zbMATHGoogle Scholar
  11. 11.
    M. Schultz, “L∞-multivariate Approximation Theory,” SIAM J. Numer. Analysis, 6, 184–209, (1969).zbMATHGoogle Scholar
  12. 12.
    M. Schultz, Spline Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.zbMATHGoogle Scholar
  13. 13.
    B. K. Swartz and R. S. Varga, “Error Bounds for Spline and L-spline Interpolation,” J. Approx. Theory 6, 6–149, (1972).CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    R. S. Varga, Functional Analysis and Approximation Theory in Numerical Analysis, SIAM, 1972.Google Scholar
  15. 15.
    D. S. Watkins, “Error Bounds for Polynomial Blending Function Methods,” SIAM J. Numer. Analysis, 14, 721–734.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1979

Authors and Affiliations

  • Charles Hall
    • 1
  1. 1.Institute for Computational Mathematics and Applications Department of Mathematics and StatisticsUniversity of PittsburghUSA

Personalised recommendations