Advertisement

Some Applications of Polynomial and Spline Approximation

  • Lothar Collatz
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 49)

Summary

The distinction is described between qualitative error estimations (order of magnitude of the error) and quantitative error bounds (numerically computable strong mathematical pointwise error bounds). Progress by using approximation methods is made in the last years in singular nonlinear boundary value problems, in the method of finite elements, in free boundary value problems (exact inclusion for the free boundary in simple cases) and other areas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [69]
    Bredendiek, E. [69] Simultant Approximation, Arch. Rat. Mech. Anal., 33 (1969), 307–330.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [76]
    Bredendiek, E. and L, Collatz [76] Simultant Approximation bei Randwertaufgaben, to appear in Intern. Ser. Num. Math. 1976.Google Scholar
  3. [66]
    Cheney E.W. [66] Introduction to approximation theory N.W. McGraw-Hill, 1966.zbMATHGoogle Scholar
  4. [56]
    Collatz, L. [56] Approximation von Funktionen bei einer und bei mehreren unabhängigen Veränderlichen, Z. Angew. Math. Mech. 36 (1956), 198–211.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [69]
    Collatz, L. [69] Nichtlineare Approximation bei Randwertaufgaben V.JKM. Weimer 1969, 169–182.Google Scholar
  6. [75a]
    Collatz, L. [75a] Methods for Solution of Partial Differential Equations, Symp. Numer. Solution Part. Diff. Equ. Kjeller, Norway 1975, 1–16.Google Scholar
  7. [74]
    Collatz, L. [74] Monotonicity with discontinuities in partial differential equations, Proc. Conf. Ord. Part. Diff. Equ. Dundee 1974, Lect. Notes Math. Bd. 415 (1974) 85–102.MathSciNetGoogle Scholar
  8. [75]
    Collatz, L. [75] Bemerkungen Zur verketteten Approximation, Intern. Ser. Num. Math. 26 (1975), 41–45.Google Scholar
  9. [77]
    Collatz, L. [77] The numerical treatment of some singular boundary value problems, Conference on Numer. Analysis, Dundee 1977, to appear.Google Scholar
  10. [78]
    Collatz, L. [78] Application of approximation to some singular boundary value problems, Proc. Conference Num. Anal. Dundee, Springer Lect. Not. Math. Bd. 630 (1978) 41–50.MathSciNetGoogle Scholar
  11. [73]
    Collatz, L. — W. Krabs [73] Approximationstheorie, Teubner, Stuttgart, 1973, 208 S.CrossRefzbMATHGoogle Scholar
  12. [78]
    Hoffmann, K.H. [78] Monotonie bei nichtlinearen Stefan-Problemen, Internat. Ser. Num. Math. 39 (1978), 162–190.Google Scholar
  13. [67]
    Meinardus, G. [67] Approximation of Functions, Theory and Numerical Methods, Springer Verlag, 1967, 198 S.Google Scholar
  14. [76]
    Meinardus, G. [76] Periodische Splines Functionen, Lect. Notes Math. Bd. 501 (1976) 177–199.CrossRefMathSciNetGoogle Scholar
  15. [60]
    Meyer, A.G. [60] Schranken für die Lösungen von Randwertaufgaben mit elliptischer Differentialgleichung. Arch. rat. Mech. Anal. 6 (1960), 277–298.CrossRefzbMATHGoogle Scholar
  16. [78]
    Meyn, K.-H. -B. Werner [78] Randomaximum- und Monotonieprinzipien für elliptische Randwertaufgaben mit Gebietszerlegungen, erscheint demnächst, to appear.Google Scholar
  17. [77]
    Mitchell, A. R. — R. Wait [77] The finite Element Method in Partial Differential Equations, 1977, 192 p.zbMATHGoogle Scholar
  18. [78]
    Natterer, F. [78] Berechnung oberer Schranken für die Norm der Ritz-Projektion auf finite Elemente Internat. Ser. Num. Math. 39 (1978) 236–245.MathSciNetGoogle Scholar
  19. Osborne, M.R. — G.A. Watson [78] Nonlinear Approximation Problems in Vektornorms, Lect. Notes Math, 630 Springer 1978, 117–132.Google Scholar
  20. [71]
    Prenter, P. [71] Polynomial operators and equations, in Proc. Symp. Nonlinear functional analysis and applications, ed. L.B. Rail, Academic Press 1971.Google Scholar
  21. [63]
    Redheffer, R.M. [63] Die Collatzshce Monotonie bei Anfangswertproblemen, Arch. Rat. Mech. Anal. 14 (1963), 196–212.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [56]
    Schröder, J. [56] Das Iterationsverfahren bei allgemeinerem Abstandbegriff, Math. Z. 1956, 66, 111–116.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [59]
    Schröder, J. [59] Vom Defekt ausgehende Fehlerabschätzungen bei Differentialgleichungen. Arch. Rat. Mech. Anal. 3 (1959) 219–228.CrossRefzbMATHGoogle Scholar
  24. [78]
    Sprekels, J. [78] Iterationsverfahren zur Einschliebung positiver Lösungen superlinearer Integralgleichungen. Intern. Ser. Num. Math. 39, (1978) 261–279.MathSciNetGoogle Scholar
  25. [72]
    Taylor, G.D. [72] On minimal H-sets, J. Approximation Theory 5 (1972), 113–117.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [77]
    Voss, H. [77] Existenz und Einschliebung positiver Losungen superlinearer Integralgleichungen und Randowertaufgaben, Habil. Schrift, Hamburg, 1977.Google Scholar
  27. [70]
    Walter, W. [70] Differential and Integral Inequalities, Springer 1970, 352 S.Google Scholar
  28. [77]
    Weinitschke, H. [77] Verzweigungsprobleme bei kreisförmigen elastischen Platten, Intern. Ser. Num. Math. 38 (1977) 195–212.MathSciNetGoogle Scholar
  29. [75]
    Werner, B. [75] Monotonie und finite Elemente bei elliptischen Differentialgleichungen, Intern. Ser. Num. Math. 27 (1975) 309–329.Google Scholar
  30. [68]
    Wetterling, W. [68] Lösungsschranken bei elliptischen Differen-tialgleichungen, Intern. Ser. Num. Math. 9 (1968) 393–401.MathSciNetGoogle Scholar
  31. [77]
    Wetterling, W. [77] Quotienteneinschliebung bei Eignewertaufgaben mit partieller Differentialgleichung, Int. Ser. Num. Math. 38 (1977) 213–218.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1979

Authors and Affiliations

  • Lothar Collatz
    • 1
  1. 1.HamburgGermany

Personalised recommendations