Advertisement

Thermosetting Resins for Reinforced Plastics

  • G. Pritchard
Chapter
Part of the The Development Series book series (POLS, volume 30)

Summary

The resins used in the reinforced plastics industry are mainly of the thermo- setting variety. This means that processing and fabrication operations are accompanied by chemical crosslinking reactions, which make the production of moulded objects less straightforward than is the case for thermoplastics. However, many of the desirable physical and thermomechanical properties of thermosetting resins derive from their crosslinked structure.

Various classes of resin are discussed in brief outline. The common feature of these resins, their three-dimensional network structure, renders analysis and characterisation difficult, but new physical and chemical techniques are helping polymer scientists to achieve a better understanding of resin structure and properties. These techniques, together with other technical advances, for example in processing technology, will be important in determining the future of thermosetting resins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morgan, R. J. and O’Neal, J. E. J. Macromol. Sci., Phys., 1978, B15, 139.CrossRefGoogle Scholar
  2. 2.
    Nelson, B. E. and Turner, D. T. J. Polym. Sci., Polym. Phys. Ed., 1972, 10, 2461.Google Scholar
  3. 3.
    Funke, W. J. Polym. Sci., 1967, Part C3, 1497.Google Scholar
  4. 4.
    Aleman, J. V. Polym. Eng. Sci., 1978, 18, 1160.CrossRefGoogle Scholar
  5. 5.
    Fowle, D. J. Chem. Ind., 1978, 361.Google Scholar
  6. 6.
    Desai, R. R. Composites, 1974, 5, 16.CrossRefGoogle Scholar
  7. 7.
    Wilson, E. L. in Flame Retardancy of Polymeric Materials, Vol. 3, ed. Kuryla, W. C. and Papa, A. J., 1975, Marcel Dekker, New York, p. 254.Google Scholar
  8. 8.
    Bruins, P. F., ed., Unsaturated Polyester Technology, 1976, Gordon and Breach, New York.Google Scholar
  9. 9.
    Potter, W. G. Epoxide Resins, 1970, Iliffe, London.Google Scholar
  10. 10.
    Idris Jones, J. Chem. Brit., 1970, 6, 251.Google Scholar
  11. 11.
    Judd, N. C. W. and Wright, W. W. Reinforced Plastics, 1978, 22, 39.Google Scholar
  12. 12.
    Rinde, J. A., Mones, E. T., Moore, R. L. and Newey, H. A. 34th SPI Reinforced Plastics/Composites Conf., New Orleans, La., USA, 1979, Paper 17-A.Google Scholar
  13. 13.
    Hancox, N. L. and Wells, H. 32nd SPI Reinforced Plastics/Composites Conf., Washington D.C., USA, 1977, Paper 9-C.Google Scholar
  14. 14.
    Anon Plastics and Rubber Weekly, 1979, Sept. 21, pp. 24–6.Google Scholar
  15. 15.
    Schick, J. P. Plastica, 1978, 31, 4.Google Scholar
  16. 16.
    Longenecker, D. M. and Greth, G. G. Plastics Eng., 1977, 33, 52.Google Scholar
  17. 17.
    Burns, R., Lynskey, B. M., Gandhi, K. S. and Hankin, A. G. Plastics and Polymers, 1975, 43, 228.Google Scholar
  18. 18.
    Bauer, S. H. Plastics Eng., 1977, 33, 44.Google Scholar
  19. 19.
    May, C. A., Haddad, D. K. and Browning, C. E. 33rd SPI Reinforced Plastics/Composites Conf., Washington, D.C., USA, 1978, Paper 15-D.Google Scholar
  20. 20.
    Lee, W. Y. J. Appl. Polym. Sci., 1978, 22, 3343.CrossRefGoogle Scholar
  21. 21.
    Koenig, J. L. and Shih, P. T. K. J. Polym. Sci., 1972, 10, Part A2, 721.Google Scholar
  22. 22.
    Tomita, B. and Hatono, S. J. Polym. Sci., Polym. Chem. Ed., 1978, 16, 2509.CrossRefGoogle Scholar
  23. 23.
    Pospisil, L. and Navratil, M. Chem. Prum., 1979, 29, 34.Google Scholar
  24. 24.
    Birley, A. W., Dawkins, J. V. and Kyriacos, D. Polymer, 1978, 19, 1433.CrossRefGoogle Scholar
  25. 25.
    Haeusler, K. G., Schroeder, E., Grosskreuz, G. and Hube, H. Plastic u. Kaut, 1978, 5, 691.Google Scholar
  26. 26.
    Hase, A. and Hase, T. Analyst, 1972, 97, 998.CrossRefGoogle Scholar
  27. 27.
    Fritz, D. F., Sahil, A., Keller, H. P. and Kovats, E. S. Analyst, Chem., 1979, 51, 7.CrossRefGoogle Scholar
  28. 28.
    Stone, D. E. W. and Clarke, B. Technical Report No. 74162 (Dec. 1974) Royal Aircraft Establishment, Farnborough, England.Google Scholar
  29. 29.
    Dean, G. Characterization of fibre composites using ultrasonics. Proceedings of Conference‘Composites—Standards, Testing and Design’, 1974, IPC Science and Technology Press, Guildford, England, p. 126.Google Scholar
  30. 30.
    Torp, S., Førli, O. and Malmo, J. 32nd SPI Reinforced Plastics/Composites Conf., Washington, D.C., USA, 1977, Paper 9-A.Google Scholar
  31. 31.
    Barrett, C. S. and Predecki, P. Polym. Eng. Sci., 1976, 16, 602.CrossRefGoogle Scholar
  32. 32.
    Joiner, J. C. The determination of voids in carbon fibre composites, Report AQD/NM 00296, (July 1973), Ministry of Defence, Aircraft Quality Directorate, Woolwich, England.Google Scholar
  33. 33.
    Anon Reinforced Plastics, 1975, 19, 148.Google Scholar
  34. 34.
    Brighton, C. A., Pritchard, G. and Skinner, G. A. Styrene Polymers: Technology and Environmental Aspects, Chapters 5 and 7, 1979, Applied Science Publishers Ltd, London.Google Scholar

Copyright information

© Applied Science Publishers Ltd 1980

Authors and Affiliations

  • G. Pritchard
    • 1
  1. 1.Kingston PolytechnicSurreyUK

Personalised recommendations