Advertisement

Improved production, by means of biomolecular engineering methods, of substances for: ‐ animal husbandry (particularly vaccines and hormones),‐ agro-food industries

  • E. Magnien
Chapter
  • 54 Downloads

Keywords

Bovine Leukemia Virus Infectious Bronchitis Virus Scientific Staff Milk Protein Gene Infectious Bronchitis Virus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Gubler, U. and Hoffman, B.J. (1983). Gene 25, 263–269.PubMedGoogle Scholar
  2. Okayama, H. and Berg, P. (1982). Molecular and Cellular Biology 2, 161–170.PubMedGoogle Scholar
  3. Ruther, U. and Muller-Hill, B. (1983). EMBO Journal 2, 1791–1794.Google Scholar
  4. Bountiff, L., Britton, P. and Millson, G.C. (1984). “Cloning of Transmissible Gastroenteritis Virus mRNA Species”, 100th Meeting of the Society for Microbiology.Google Scholar
  5. Bountiff, L., Garwes, D.J., Millson, G.C. and Baird, G.D. (1984). The genome of transmissible gastroenteritis virus (TGEV). In Molecular Biology and Pathogenesis of Coronaviruses, pp. 225–226. Plenum Publishing Corp., N.Y.Google Scholar
  6. Britton, P., Garwes, D.J., Bountiff, L. and Millson, G.C. (1984). “Identification of the Immunogenic Antigen of Porcine Transmissible Gastroenteritis Virus”. Cold Spring Harbor Meeting on Modern Approaches to Vaccines. Abstract 41, p. 41.Google Scholar
  7. Britton, P., Garwes, D.J., Page, K.W., Millson, G.C., Bountiff, L. and Hunter, G.D. (1985). “Genetic Manipulation and Expression of Porcine Transmissible Gastroenteritis Virus Genes”. 13th International Congress of Biochemistry, Amsterdam, Holland. Abstract MO-113, p. 54.Google Scholar
  8. Britton, P., Page, K., Garwes, D.J. and Baird, G.D. (1985). “Instability of Large Transmissible Gastroenteritis Virus cDNA Inserts in Recombinant Plasmids”. CEC Symposium on Plasmid Instability, Heraklion, Crete, pp. 4–5.Google Scholar
  9. Garwes, D.J., Bountiff, L., Millson, G.C. and Elleman, C.J. (1984). Defective Replication of Porcine Transmissible Gastroenteritis Virus in a Continuous Cell line. In Molecular Biology and Pathogenesis of Coronaviruses, pp 79–94. Plenum Publishing Corp., N.Y.Google Scholar
  10. Garwes, D.J., Britton, P., Bountiff, L., Millson, G.C. and Elleman, C.J. (1984). “Studies on the immunogenic antigen of Porcine Transmissible Gastroenteritis Virus”. 6th International Congress of Virology, Sendai, Japan. Abstract p. 22–32, p. 218.Google Scholar
  11. Garwes, D.J., Britton, P., Bountiff, L., Millson, G.C. and Stewart, F. (1984). “Epitope Identification and Gene Manipulation in Porcine Transmissible Gastroenteritis Virus”. CEC Symposium on Biomolecular Engineering for Animal Husbandry, Rijswijk, Holland, p. 19.Google Scholar
  12. Garwes, D.J., Britton, P., Stewart, F. and Page, K. (1985). “Antigenic Structure and Genetic Organisation of Porcine Transmissible Gastroenteritis Virus”. International Meeting on Advances in Virology, Catania, Italy. Abstract p. 29.Google Scholar
  13. M.J. Francis, C.M. Fry, D.J. Rowlands, F. Brown, J.L. Bittie, R.A. Houghten and R.A. Lerner ‐ “ Immunological Priming with Synthetic Peptides of Food-and-Mouth Disease Virus” - J. gen. Virol 66 2347–2354 (1985)PubMedGoogle Scholar
  14. N.R. Parry, E.J. Ouldridge, P.V. Barnett, D.J. Rowlands, F. Brown, - “Identification of Neutralizing Epitopes of Foot-and-Mouth Disease Virus” - Vaccines 85. Editors: R.A. Lerner, R.M. Chanock and F. Brown 211–216 (1985).Google Scholar
  15. E. J. Ouldridge, N.R. Parry, P.V. Barnett, C. Bolwell, D.J. Rowlands, F. Brown, J.L. Bittle. Houghten and R.A. Lerner– “Comparison of the Structure of the major Antigenic Site of Foot-and-Mouth Disease Viruses of two different Serotypes” - Vaccines 86. Editors: F. Brown, R.M. Chanock and R.A. Lerner (1986).Google Scholar
  16. M.J. Francis, C.M. Fry, D.J. Rowlands, F. Brown, J.L. Bittle, R.A. Houghten and R.A. Lerner – “Priming with Peptides of Foot-and-Mouth Disease Virus” - Vaccines 85. Editors: R.A. Lerner, R.M. Chanock and F. Brown 203–210 (1985).Google Scholar
  17. M.J. Francis, C.M. Fry, D.J. Rowlands, F. Brown, J.L. Bittle, R.A. Houghten and R.A. Lerner–“Immune Response to Uncoupled Peptides of Foot-and-Mouth Disease Virus” - Submitted to Journal of Immunology.Google Scholar
  18. Brown, T.D.K, and Boursnell, M.E.G. (1984). Avian infectious bronchitis virus genomic RNA contains sequence homologies at the intergenic boundaries. Virus Res. 1, 15–24.Google Scholar
  19. Boursnell, M.E.G. and Brown, T.D.K. (1984). Sequencing of Coronavirus IBV genomic RNA: a 195-base open reading frame encoded by mRNA B. Gene 29, 87–92.PubMedGoogle Scholar
  20. Boursnell, M.E.G., Brown, T.D.K, and Binns, M.M. (1984). Sequence of the membrane protein gene from avian Coronavirus IBV. Virus Res. 1, 303–313.Google Scholar
  21. Brown, T.D.K., Boursnell, M.E.G. and Binns, M.M. (1984). A leader sequence is present on mRNA A of avian infectious bronchitis virus. J. gen. Virol. 65, 1437–1442.PubMedGoogle Scholar
  22. Boursnell, M.E.G., Binns, M.M., Foulds, I.J. and Brown, T.D.K. (1985). Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. J. gen. Virol. 66, 573–580.PubMedGoogle Scholar
  23. Binns, M.M., Boursnell, M.E.G., Cavanagh, D., Pappin, D.C. and Brown, T.D.K. (1985). Cloning and sequencing of the gene encoding the spike protein of Coronavirus IBV J. gen. Virol. 66, 719–726.PubMedGoogle Scholar
  24. Boursnell, M.E.G., Binns, M.M. and Brown, T.D.K. (1985). Sequencing of the Coronavirus IBV genomic RNA: three open reading frames in the 5′ “unique” region of mRNA D. J. gen. Virol. 66, 2253–2258.PubMedGoogle Scholar
  25. Binns, M.M., Boursnell, M.E.G., Foulds, I.F. and Brown, T.D.K. (1985). The use of a random priming procedure to generate cDNA libraries of infectious bronchitis virus, a large RNA virus. J. Virological Methods 11, 265–269.Google Scholar
  26. Cavanagh, D., Davis, P.J., Pappin, D.J.C., Binns, M.M., Boursnell, M.E.G. and Brown, T.D.K. (1986). Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Research 4, 133–143.PubMedGoogle Scholar
  27. Brown, T.D.K., Boursnell, M.E.G., Binns, M.M. and Tomley, F.M. (1986). Cloning and sequencing of 5f terminal sequences from avian infectious bronchitis virus genomic RNA. J. gen. Virol. 67, 221–228.PubMedGoogle Scholar
  28. Infectious bronchitis virus spike protein. M.M. Binns, M.E.G. Boursnell, T.D.K. Brown & F.M. Tomley. PCT/GB86/D0181.Google Scholar
  29. (1).
    Palmiter, R.D. et al. (1982). Nature 300, 611–615.PubMedGoogle Scholar
  30. (2).
    Hammer, R.E. etal. (1985). Nature 315, 680–683.PubMedGoogle Scholar
  31. Auffray, C. etal. (1980). Eur. J. Biochem., 107, 303–314.PubMedGoogle Scholar
  32. (3).
    Auffray, C. etal. (1980). Eur. J. Biochem., 107, 303–314.Google Scholar
  33. (4).
    Maniatis, T. et al. (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor.Google Scholar
  34. (5).
    Masiakowski, P. etal. (1982). Nuc. Acids Res., 10, 7895.Google Scholar
  35. (6).
    Ullrich, A. etal. (1984). Nature 309, 418.PubMedGoogle Scholar
  36. (7).
    Sanger, F. etal. (1977). Proc. Natl. Acad. Sci., 74, 5463.Google Scholar
  37. (8).
    Hohn, B. and Murray, K. (1977). Proc. Natl. Acad. Sci., 74, 3259.Google Scholar
  38. (9).
    Advanced Methods in Recombinant DNA Techniques - EMB0 Practical Course, (ed. John Collins), B.G.F.Google Scholar
  39. (10).
    Powell, R. et al (1986). Nuc. Acids Res., 14, 1541.Google Scholar
  40. (11).
    Lusky, M. et al. (1983). Mol. Cell Biol., 3, 1108–1122.PubMedGoogle Scholar
  41. (12).
    Palmiter, R.D. et al. (1983). Science 222, 809–814.PubMedGoogle Scholar
  42. (13).
    Stuart, G.W. et al. (1984). Proc. Natl. Acad. Sci., 81, 7318–7323.PubMedGoogle Scholar
  43. (14).
    Yano, T. et al. (1981). J. Biochem., 90, 773–777.PubMedGoogle Scholar
  44. (15).
    Chourrout, D. et al. (1986). Aquaculture 51, 143–150.Google Scholar
  45. Powell, R., Neilan, J. and Gannon, F. (1986). Plaque dot assay. Nucleic Acids Research 14, 1541.Google Scholar
  46. Gannon, F. (1986). Exploiting new technologies. Oxford University Press. (In press). (Transgenics).Google Scholar
  47. 1.
    The use of genetic recombination for constructing novel strains of a picornavirus (1983). Mccahon, D., King, A.M.Q., Saunders, K., Slade, W.R. and Newman, J.W.I. Cold Spring Harbor Symposium on “Modern Approaches to Vaccines”, September 1983 (Chanock, R. and Lerner, R., eds. ), pp. 45–51.Google Scholar
  48. 2.
    Isolation and biochemical characterisation of intertypic recombinants of foot-and-mouth disease virus (1985). McCahon, D., King, A.M.Q., Roe, D.S., Slade, W.R., Newman, J.W.I, and Cleary, A.M. Virus Research 3, 87–100.Google Scholar
  49. 3.
    Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus (1985). King, A.M.Q., McCahon, D., Saunders, K., Newman, J.W.I, and Slade, W.R. Virus Research 3, 373–384.PubMedGoogle Scholar
  50. 4.
    Recombination and oligonucleotide analysis of guanidine resistant foot-and-mouth disease virus mutants (1985). Saunders, K., King, A.M.Q., McCahon, D., Newman, J.W.I., Slade, W.R. and Forss, S. J.Virol. 56, 921–929.PubMedGoogle Scholar
  51. 1.
    McCrae, M.A. and Faulkner-Valle, G.P. (1981). J. Virol. 39 490–496.PubMedGoogle Scholar
  52. 2.
    McCrae, M.A. and McCorquodale, J.G. (1982). J. Virol. 44 1076–1079.Google Scholar
  53. 3.
    Zabeau, M. and Stanley, K.K. (1982). Embo J. 1 1217–1224.PubMedGoogle Scholar
  54. 4.
    Stanley, K.K. and Luzio, J.P. (1984). Embo J. 3 1429–1434.PubMedGoogle Scholar
  55. Mercier, J.C., Gaye, P., Soulier, S., Hue-Delahaie, D. & Vilotte,J.L (1985) “Construction and identification of recombinant plasmids carrying cDNAs coding for ovine OCsy, αs1-, αs2-, β-, K-casein and β-lactoglobulin. Nucleotide sequence of α s1 -casein cDNA.” Biochimie, 67, 959–971.PubMedGoogle Scholar
  56. Boisnard, M. & Pétrissant, G. (1985) “Complete sequence of ovine as2-casein messenger RNA.” Biochimie, 67, 1043–1051.PubMedGoogle Scholar
  57. Gaye, P., Hue-Delahaie, D., Mercier, J.C., Soulier, S., Vilotte, J.L. & Furet, J.P. (1986) “Complete sequence of ovine a-lactalbumin mRNA.” Biochimie, submitted.Google Scholar
  58. Furet, J.P., Mercier, J.C., Soulier, S., Gaye, P., Vilotte, J.L. & Hue-Delahaie, D. (1986) “Séquence de I’ARN-messager de la caséine Kovine.” Biochimie, manuscript in preparation.Google Scholar
  59. Pétrissant, G., Boisnard, M., Brignon, G., Gaye, P., Soulier, S. & Mercier, J.C. (1986) “Structural studies of two non allelic forms of ovine α s2 casein mRNAs and of the relevant polypeptides.” Nucleic Acids Res., manuscript in preparation.Google Scholar
  60. Vilotte, J.L., Soulier, S., Mercier, J.C., Gaye, P., Hue-Delahaie, D. & Furet, J.P. (1986) “Nucleotide sequence of the bovine a-lactalbumin gene. Comparaison with its rat counterpart.” Biochimie, manuscript in preparation.Google Scholar
  61. Gaye, P., Mercier, J.C., Pétrissant, G., Vilotte, J.L. & Popescu, P. (1986) “Structure des ADN complémentaires des lactoprotéines: application à la recherche des gènes et à leur localisation chromosomique.” Reprod. Nutr. Develop. 26, (2B)Google Scholar
  62. Dusanter-Fourt, I., Djiane, J., Kelly, P.A., Houdebine, L.M. and Teyssot, B. Differential biological activities between mono- and bivalent fragments of anti-prolactin receptor antibodies. Endocrinology (1984) 114, 1021–1027.PubMedGoogle Scholar
  63. Edery, M., Houdebine, L.M., Djiane, J. and Kelly, P.A. Studies of β-casein content of normal and neoplastic rat mammary tissues by a homologous radioimmunoassay. Mol. Cell. Endocr. (1984) 34, 145–151.Google Scholar
  64. Ferland, L.H., Djiane, J., Houdebine, L.M. and Kelly, P.A. Intracellular transformation of prolactin following internalization into rat liver. Mol. Cell. Endocr. (1984) 35, 25–31.Google Scholar
  65. Ferland, L.H., Djiane, J., Houdebine, L.M. and Kelly, P.A. The effect of chloroquine on lysosomal prolactin receptors in rat liver. Endocrinology (1984) US, 1842–1849.Google Scholar
  66. Houdebine, L.M., Djiane, J., Kelly, P.A., Katoh, M., Dusanter-Fourt, I. and Martel, P. The mechanism of action of prolactin on casein gene expression. Proceedings of the 7th International Congress of Endocrinology, Quebec City (1984), pp. 203–206 (edited by F. Labrie and L. Proulx, Elsevier Science Publishing Company Inc.).Google Scholar
  67. Kelly, P.A., Djiane, J., Katoh, M., Ferland, L.H., Houdebine, L.M., Teyss0t, B. and Dusanter-Fourt, I. The interaction of prolactin with its receptors in target tissues and its mechanism of action. Rec. Progr. Horm. Res. (1984) 40, 379–439.PubMedGoogle Scholar
  68. Houdebine, L.M., Djiane, J., Dusanter-Fourt, I., Martel, P., Kelly, P.A., Devinoy, E. and Servely, J.L. Hormonal action controlling mammary activity. J. Dairy Sci. (1985) 68, 489–500.PubMedGoogle Scholar
  69. Kelly, P.A., Katoh, M., Djiane, J,, Houdebine, L.M. and Dusanter-Fourt,I. Characterization of antisera to prolactin receptors. Methods in Enzymology (1985) 109, 667–676.PubMedGoogle Scholar
  70. Rosa, A.A.M., Ferland, L.H., Djiane, J., Houdebine, L.M. and Kelly, P.A. Maintenance of prolactin binding sites in rat liver cells in suspension culture: effect of prolactin and of inhibitors of various cellular functions. Endocrinology (1985) 116, 1288–1294.PubMedGoogle Scholar
  71. Houdebine, L.M. Régulation hormonale de la glande mammaire normale. Bull. Cancer (1985) 72, 121–141.PubMedGoogle Scholar
  72. Houdebine, L.M. Contrôle hormonal du développement et de l’activité de la glande mammaire. Reprod. Nutr. Develop. (1986) 26 (sous presse).Google Scholar
  73. Benchaibi M., 1984. Transfert de gènes dans des cellules eucaryotiques au moyen d’un retrovirus aviaire. Thèse de 3éne cycle. Université Claude Bernard Lyon I.Google Scholar
  74. Xiao J.H., 1984. Utilisation de retrovirus pour le transfert de gènes dans les cellules eucaryotiques. Diplôme d’études approfondies. Université Claude Bernard Lyon I.Google Scholar
  75. Flamant F., 1986. Utilisation de vecteurs dérivés du virus de 1’érythroblastose aviaire (AEV) pour le transfert de gènes chez les embryons de poulet. Thèse de 3éme cycle. Université Claude Bernard Lyon I.Google Scholar
  76. Samarut J., Benchaibi M., Xiao J.H. et Nigon V.M. 1984. Vecteurs de clonage ou d’expression comportant le génome du virus de 1’érythroblastose aviaire et cellules transfectées par ces virus. Demande de brevet français No 84 15764 déposée le 15/10/84.Google Scholar
  77. Samarut J., Verdier G., Benchaibi M., Savatier P., Poncet D., Flamant F., Xiao J.H., Thqraval P., Chambqnnet F. et Nigon V.M. 1985. Vecteurs de clonage ou d’expression comportant le virus de l’érythroblastose aviaire et cellules transfectées par ces vecteurs. Demande de brevet européen No 60708 D. 10912 déposée le 15/10/85.Google Scholar
  78. Jurdic P., Gandrillon O., Samarut J. et Nigon V.M. 1986. Procédé pour la préparation de cultures à long terme de cellules. Demande de brevet français No 86 04999 déposée le 8/4/86.Google Scholar
  79. (1).
    Mettenleiter, T.C., N. Lukäcs, H.-J. Rziha. 1983. Investigation of herpesvirus (Pseudorabies virus) -specific mRNAs coding for an immunogenic glycoprotein. CEC-meeting, Abstr., Louvain-La-Neuve.Google Scholar
  80. (2).
    Lukàcs, N., H.-J. Thiel, T.C. Mettenleiter, H.-J. Rziha. 1983. Characterization of the glycoproteins of Pseudorabies virus using monoclonal antibodies. Zbl. Bakt. Hyg., I. Abt. Orig. A 254 Google Scholar
  81. (3).
    Rziha, H.-J., T.C. Mettenleiter, N. Lukàcs, H.-J. Thiel. 1984. Genetic engineering of vaccines, hormones, and genes for animal husbandry. CEC-meeting, Abstr., Rijswijk.Google Scholar
  82. (4).
    Mettenleiter, T.C., N. Lukäcs, H.-J. Rziha. 1985. Mapping of the structural gene of Pseudorabies virus glycoprotein A and identification of two non-glycosylated precursor polypeptides. J.Virol. 53, 52–57.PubMedGoogle Scholar
  83. (5).
    Lukàcs, N., H.-J. Thiel, T.C. Mettenleiter, H.-J. Rziha. 1985. Demonstration of three major species of Pseudorabies virus glycoproteins and identification of a disulfide-linked glycoprotein complex. J.Virol. 53, 166–173.PubMedGoogle Scholar
  84. (6).
    Mettenleiter, T.C., N. Lukàcs, H.-J. Rziha. 1985. Pseudorabies virus avirulent strains fail to express a major glycoprotein. J.Virol. 56, 307–311.PubMedGoogle Scholar
  85. (6).
    Mettenleiter, T.C., N. Lukàcs, H.-J. Rziha. 1985. Pseudorabies virus avirulent strains fail to express a major glycoprotein. J.Virol. 56, 307–311.PubMedGoogle Scholar
  86. (8).
    Mettenleiter, T.C., C. Schreurs, H.-J. Thiel, H.-J. Rziha. Variability of Pseudorabies virus glycoprotein I expression. Submitted for publication, J.Virol.Google Scholar
  87. (9).
    Van Oirschot, I.T., H.-J. Rziha, P.I.L.M. Moonen, J.M.A. Pol, D. van Zoone. 1886. Differentiation of serum antibodies from pigs vaccinated or infected with Aujesky’s diseases virus by a competitive enzyme immunoassay. J. gen. Virol., in press.Google Scholar
  88. J.M. Vlak and J.A.R. Keus. Engineering and selection of baculovirus recombinants for production in cultured insect cells. Abstract CEC Meeting on Biomolecular Engineering for Animal Husbandry. Rijswijk (1984), p. 36.Google Scholar
  89. J.M. Vlak and J.A.R. Keus. Engineering and selection of baculovirus recombinants for production in cultured insect cells. CEC Progress Report, Research and Training Programme in Biomolecular Engineering. (1984), p. 241–246.Google Scholar
  90. J. Roosien, M. Usmany, E.C. Klinge-Roode and J.M. Vlak. Engineering and selection of baculovirus recombinants. Abstract CEC meeting on Genetic Engineering of Virus and Cellular Genes Important in Animal Husbandry. Cambridge (1986) p. 42–43Google Scholar
  91. J. Roosien, M. Usmany, E.C. Klinge-Roode and J.M. Vlak. Engineering and selection of baculovirus recombinants. Abstract CEC meeting on Genetic Engineering of Virus and Cellular Genes Important in Animal Husbandry. Cambridge (1986) p. 42–43Google Scholar
  92. 1.
    Hill, C., Daly, C. and Fitzgerald, G.F. (1985). FEMS Microbiol. Lett. 30, 115–119.Google Scholar
  93. 2.
    Fitzgerald, G.F. and Clewell, D.B. (1985). Infect. Immun. 47, 415–420.PubMedGoogle Scholar
  94. 3.
    Fitzgerald, G.F., Daly, C., Brown, L.R. and Gingeras, T.R. (1982). Nucl. Acid. Res. 10, 8171–8179.Google Scholar
  95. 4.
    Daly, C., Fitzgerald, G.F., Mullins, E., Hayes, F., Coveney, J., Costello, V., Murphy, M., Hill, C. and Lennon, S. (1986). BEP Meeting “Genetic Engineering of Microorganisms important for Agro-Food Industries”, Cork, Ireland, pp. 56–57.Google Scholar
  96. Fitzgerald, G.F., Daly, C., Brown, L.R. and Gingeras, T.R. (1982). ScrFI: A new sequence specific endonuclease from Streptococcus cremoris. Nucl. Acid Res. 10: 8171,Google Scholar
  97. Hill, C., Daly, C. and Fitzgerald, G.F. (1985). Conjugative transfer of the transposon Tn919 to lactic acid bacteria. FEMS Microbiol. Lett. 30: 115.Google Scholar
  98. Baumgartner, A., Murphy, M., Daly, C. and Fitzgerald, G.F. (1986). Conjugative co-transfer of lactose and bacteriophage resistance plasmids from Streptococcus cremoris UC653. FEMS Microbiol. Lett, (accepted for publication).Google Scholar
  99. Hill, C., Daly, C. and G.F. Fitzgerald (1986). Development of a high frequency delivery system for the transposon Tn919 in lactic streptococci: Random insertion in Streptococcus lactis subsp. diacetylactis 18–16. Submitted to Appl. Environ, Microbiol.Google Scholar
  100. Daly, C, (1985). Advances in starter culture technology. Proceedings of Biotech. f85 Europe, Geneva, May 1985. Online Conferences Ltd. London, p. 239–251.Google Scholar
  101. Daly, C. (1983). Starter Culture Developments in Ireland. Irish Journal of Food Science and Technology 7: 39–48,Google Scholar
  102. Daly, C. (1983). The use of multiple strain starter cultures in the dairy industry. Antoine Van Leuwoenhoek 49: 3, 297–312.Google Scholar
  103. Coveney, J., Fitzgerald, G.F. and Daly, C. (1984). Restriction of bacteriophage DNA in the lactic streptococci, p.68. IN: Proc. of the Commission of the European Communities, Biomolecular Engineering Programme, Marseilles, France.Google Scholar
  104. Costello, V., Fitzgerald, G.F., Daly, C. and O’Reilly, P. (1984). Biochemical and genetic aspects of bacteriophage DNA restriction in Streptococcus cremoris. Ir. J. Food Sci. Technol. 8: 154.Google Scholar
  105. Hill, C., Willis, W.D. and Daly, C. (1984). Hie involvement of plasmid DNA in proteinase activity of Streptococcus cremoris. Ir. J. Food Sci. Technol. 8: 153.Google Scholar
  106. Hayes, F., Fitzgerald, G.F. and Daly, C. (1985). Genetic analysis of proteinase activity in Streptococcus cremoris 17. Ir. J. Food Sci. Technol, 9: 77.Google Scholar
  107. Hill, C., Daly, C. and Fitzgerald, G.F. (1985). Conjugative transfer of the gram positive transposon Tn919 to lactic acid bacteria. Ir. J. Food Sci. Technol. 9: 77.Google Scholar
  108. Willis, W.D., Hill, C., Fitzgerald, G.F. and Daly, C. (1984). Genetics of proteinase production in Streptococcus cremoris, p.66. IN: Proc. of the Commission of the European Communities, Biomolecular Engineering Programme, Marseille, France.Google Scholar
  109. Lyne, J., Daly, C. and Cogan, T.M. (1984). Bacteriophage release by Streptococcus cremoris during growth at controlled pH. Ir. J, Food Sci. Technol. 8: 153.Google Scholar
  110. Hill, C.J. Role of plasmid DNA in proteinase activity of Streptococcus cremoris 077. National University of Ireland (University College, Cork ). MSc Degree awarded November 1984.Google Scholar
  111. W.M. de Vos (1985) EEC-BEP Meeting Plasmid InstabilityGoogle Scholar
  112. (2).
    A.Frischauf et al. (1983) J. Mol. Biol. 170: 827PubMedGoogle Scholar
  113. (3).
    W.A.Loenen & W.J.Brammer (1980) Gene 10: 249PubMedGoogle Scholar
  114. (4).
    P.Buckel & E.Zehelein (1981) Gene 16: 149PubMedGoogle Scholar
  115. (5).
    W.M. de Vos (1985) CEC-BEP Progress Report 1984: 257Google Scholar
  116. (6).
    S.Visser et al. (1983) Neth.Milk Dairy J. 30: 95Google Scholar
  117. (7).
    W.M. de Vos & F.L.Davies (1984) Third European Congress on Biotechnology Volume 111, 201Google Scholar
  118. (8).
    A.F.M. Simons et al. (1985) Ant. v.Leeuwenhoek 51: 565Google Scholar
  119. (9).
    W.M. de Vos et al. (1984) FEMS Microbiol.Lett. 23: 175Google Scholar
  120. (10).
    M.J Gasson (1983) J.Bacteriol. 154: 1PubMedGoogle Scholar
  121. (11).
    W.M. de Vos (1986) CEC-BEP Final Meeting Cork,54Google Scholar
  122. U.M. de Vos, H.Ü. Underwood & F.L. Davies, Plasmid DNA Encoded Bacteriophage Resistance in S. cremoris SK11. FEMS Microbiol. Lett. 23 (1984), 175–178Google Scholar
  123. W.M. de Vos & F.L. Davies, Plasmid DNA in Lactic Streptococci: Bacteriophage and Proteinase Plasmids in S. cremoris SK11. Third European Congress on Biotechnology, Verlag Chemie Volume III (1984), 201–206Google Scholar
  124. A.F.M. Simons, F.A. Exterkate, S. Visser & W.M. de Vos, Ant. v. Leeuwenhoek 51 (1985), 565–566Google Scholar
  125. A.F.M. Simons & W.M. de Vos, Melkzuurbacterien met Verbeterde Eigenschappen. Chemisch Magazine 12 (1985), 813–817Google Scholar
  126. A.F.M. Simons & W.M. de Vos, Melkzuurbacterien met Verbeterde Eigenschappen. Chemisch Magazine 12 (1985), 813–817Google Scholar
  127. W.M. de Vos, Identification, Physical Mapping and Molecular Cloning of a Plasmid Coding for Proteinase Production in S. cremoris SK11. Abstract CEC-BEP Meeting Agro-Food Marseille (1984), 58–59Google Scholar
  128. W.M. de Vos, Genetic Improvement of Starter Streptococci by the Cloning and Expression of the Gene Coding for a Non-Bitter Proteinase. CEC-BEP Report 1984 I (1985) 257–263Google Scholar
  129. W.M. de Vos, Stability of Lactic Streptococcal Vectors and Genes in S. lactis, B. subtilis and E. coli. Abstract CEC-BEP Meeting Plasmid Instability Heraklion (1985), 78–79Google Scholar
  130. W.M. de Vos, G.Simons, H. de Haard, G.Rutten & M. Lexmond, Gene Cloning in Lactic Streptococci. Abstract CEC-BEP Final Meeting Agro-Food Cork (1986) 54–55Google Scholar
  131. W.M. de Vos, G.Simons, H. de Haard, G.Rutten & M. Lexmond, Gene Cloning in Lactic Streptococci. Abstract CEC-BEP Final Meeting Agro-Food Cork (1986) 54–55Google Scholar
  132. A.F.M. Simons & W.M. de Vos, Development of Expression Vectors for Lactic Streptococci. AbstractGoogle Scholar
  133. Symposium on the Genetics of Industrial Micro-organisms Split (1986) in pressGoogle Scholar
  134. 1.
    Gunge,N. et al., J.Bacterid. 145, 382–390 (1981)Google Scholar
  135. 2.
    Wesolowki,W. et al., Current Genetics 5, 191–197 (1982)Google Scholar
  136. 3.
    Sor F. and Fukuhara,H., Current Genetics 9, 147–150 (1985)Google Scholar
  137. 4.
    Stark,M. et al., Nucl.Acids Res. 12, 6011–6031 (1985)Google Scholar
  138. 5.
    Hishinuma,F. et al., Nucl.Acids Res. 12, 7581–7597 (1985)Google Scholar
  139. 6.
    Falcone,C. et al., Plasmid, in the press.Google Scholar
  140. 7.
    Chen, X.J. et al., Submitted for publication.Google Scholar
  141. 8.
    Hartley, J.L. and Donelson, J.E., Nature 286, 860–864 (1980)PubMedGoogle Scholar
  142. 9.
    Toh-e, A. et al., Nucl. Acids Res. 13, 4267–4283 (1985)Google Scholar
  143. 10.
    Araki, H. et al., J. Mol. Biol. 182, 191–203 (1985)PubMedGoogle Scholar
  144. 11.
    Broach, J.R. and Hicks, J. B., Cell 21, 501–508 (1980)PubMedGoogle Scholar
  145. 12.
    de Louvencourt, L. et al., J. Bacteriol. 154, 737–742 (1982 or 83)PubMedGoogle Scholar
  146. 1.
    Gunge, N. et al., J. Bacterid. 145, 382–390 (1981)Google Scholar
  147. 2.
    Wesolowski, W. et al., Current Genetics 5, 191–197 (1982)Google Scholar
  148. 3.
    Sor F. and Fukuhara, H., Current Genetics 9, 147–15 (1985)Google Scholar
  149. 4.
    Stark, M. et al., Nucl. Acids Res. 12, 6011–6031 (1985)Google Scholar
  150. 5.
    Hishinuma,F. et al., Nucl. Acids Res. 12, 7581–7597 (1985)Google Scholar
  151. 6.
    Falcone, C. et al., Plasmid, in the press.Google Scholar
  152. 7.
    Chen X.J. et al., Submitted for publication.Google Scholar
  153. 8.
    Hartley, J.L. and Donelson, J.E., Nature 286, 860–864 (1980)PubMedGoogle Scholar
  154. 9.
    Toh-e, A. et al., Nucl. Acids Res. 13, 4267–4283 (1985)Google Scholar
  155. 10.
    Araki, H. et al., J. Mol. Biol. 182, 191–203 (1985)PubMedGoogle Scholar
  156. 11.
    Broach, J.R. and Hicks, J.B., Cell 21, 501–508 (1980)PubMedGoogle Scholar
  157. 12.
    de Louvencourt, L. et al., J. Bacteriol. 154,737–742 (1982 or 83)Google Scholar
  158. Gasson, M.J. & Anderson, P.H. (1985) Highcopy number plasmid vectors for use in lactic streptococci. FEMS Microbiol. Lett. 30, 193–196Google Scholar
  159. Maeda, S. & Gasson, M.J. (1986) Cloning expression and location of the S.lactis gene for phospho-3-D-galactosidase. J. Gen. Microbiol. 132 331–340PubMedGoogle Scholar
  160. Maeda, S. & Gasson, M.J. (1986) Cloning expression and location of the S.lactis gene for phospho-3-D-galactosidase. J. Gen. Microbiol. 132 331–340PubMedGoogle Scholar
  161. Youngman, R.J., Götz, F., and Elstner, E. 1984. Role of oxygen activation in adriamycin-mediated DNA strand scission and the effect of binding on the redox properties of the drug. In: Oxygen Radicals in Chemistry and Biology. Eds. W. Bors, M. Saran, and D. Tait, Walter de Gruyter, Ber¬lin, New York, pp 131–135.Google Scholar
  162. Sedewitz, B., Schleifer, K.H., and Götz, F. 1984. Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum. J. Bacterioi. 160, 273–278.Google Scholar
  163. Sedewitz, B., Schleifer, K.H., and Götz, F. 1984. Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J. Bacterioi. 160, 462–465.Google Scholar
  164. Zitzelsberger, W., Götz, F., and Schleifer, K.H. 1984. Distri-bution of superoxide dismutases, oxidases, and NADH per-oxidase in various streptococci. FEMS Microbiol. Letters 21, 243–246.Google Scholar
  165. Uhlen, M., Guss, B., Nilsson, B., Götz, F., and Lindberg, M. 1984. Expression of the gene encoding protein A in Sta-phylococcus aureus and coagulase-negative staphylococci. J. Bacterioi. 159, 713–719.Google Scholar
  166. Kreutz, B., and Götz, F. 1984. Construction of Staphylococcus plasmid vector pCA43 conferring resistance to chloramphe-nicol, arsenate, arsenite and antimony. Gene 32, 301 — 304.Google Scholar
  167. Keller, G., Schleifer, K.H., and Götz, F. 1984. Cloning of the ribokinase gene of Staphylococcus hyicus subsp. hyicus in Staphylococcus carnosus. Arch. Microbiol. 140, 218– 224.Google Scholar
  168. Götz, F., Popp, F., and Schleifer, K.H. 1984. Isolation and characterization of a virulent bacteriophage from Staphylococcus carnosus. FEMS Microbiol. Letters 23, 303– 307.Google Scholar
  169. Thudt, K., Schleifer, K.H., and Götz, F. 1985. Cloning and expression of amylase gene of Bacillus stearothermo- philus in various species of Staphylococcus. Gene 37, 163–169.PubMedGoogle Scholar
  170. Götz, F., Popp, F., Korn, E., and Schleifer, K.H. 1985. Com-plete nucleotide sequence of the lipase gene from Sta-phylococcus hyicus cloned in Staphylococcus carnosus. Nucleic Acids Res. 13, 5895–5906.PubMedGoogle Scholar
  171. Liebl, W., and F. Götz, 1986. Lipase directed export of Esche-richia coli ß-lactamase in Staphylococcus carnosus. MGG.Google Scholar
  172. 1.
    Orr-Weaver,T.L., Szostak, J.U. & Rothstein, R.J. (1981) Proc. Nat. Acad. Sci. USA 78, 6354–6356Google Scholar
  173. 2.
    Grenson, M. (1983) Eur. J. Biochem. 133, 135–139PubMedGoogle Scholar
  174. 3.
    Grenson, M. (1983) Eur. J. Biochem. 133, 141–144PubMedGoogle Scholar
  175. 4.
    Vandenbol, M., Jauniaux, J.-C., Vissers, S. and Grenson, M. (1986) Journal of Molecular Biology, SubmittedGoogle Scholar
  176. Vandenbol, M., Jauniaux, J.-C., Vissers, S. and Grenson, M. (1986) Positive and Negative Control of Ammonia-Sensitive Amino-Acid Permeases in the Yeast Saccharomyces cerevisiae: Isolation and RNA Analysis of the NPR1 Gene, Effects of NPI1 and NPR1 Gene Dose on General Amino-Acid Permease Activity. Journal of Molecular Biology, SubmittedGoogle Scholar
  177. Vandenbol, M., Vissers, S., Jauniaux, J.-C. and Grenson, M. Cloning of a yeast DNA fragment which complements the NPR1 function implicated in the pleiotropic activation of several ammonia-sensitive uptake systems in S. cerevisiae, BEP meeting, Marseille 1984Google Scholar
  178. Vandenbol, M., Vissers, S., Jauniaux, J.-C. and Grenson, M. (1985) Cloning of the nitrogen permease regulator gene NPR1 of S. cerevisiae. Arch. Int. Physiol. Biochim. 93., B172Google Scholar
  179. Vissers, S. Cloning of the GDHA gene implicated in the regulation of the permeases submitted to the ammonia- dependent catabolic repression in S. cerevisiae. BEP Meeting, Marseille, 1984Google Scholar
  180. Grenson, M., Jauniaux, J.-C., Vissers, S. and Vandenbol, M. Study of plasmid stability in chemostat-grown cultures of S. cerevisiae. BEP Meeting, Heraklion 1985Google Scholar
  181. Grenson, M., Vandenbol, M., Jauniaux, J.-C., Vissers, S. and Broman, K. Construction of transformed yeast strains for agro-food applications and development of systems for stabilizing the genetic material introduced by genetic engineering into the food yeast Saccharomyces cerevisiae. BEP Meeting, Cork, 1986Google Scholar
  182. Grenson, M., Vandenbol, M., Jauniaux, J.-C., Vissers, S. and Broman, K. Construction of transformed yeast strains for agro-food applications and development of systems for stabilizing the genetic material introduced by genetic engineering into the food yeast Saccharomyces cerevisiae. BEP Meeting, Cork, 1986Google Scholar
  183. J-L. Pernodet, J.M. Simonet and M. Guerineau (1984): Plasmids in different strains of Streptomyces ambofaciens. Free and integrated forms of plasmids pSAM2. Mol. Gen. Genet. JJ98: 35–41.Google Scholar
  184. J-L. Pernodet, J.M. Simonet, M. Guerineau (1984): Caracterisation d’un plasmide de Streptomyces ambofciens pouvant exister sous forme libre ou intégrée dans le chromosome. In: Génétique des Microorganismes Industriels. H. Heslot, ed. Société française de Microbiologie, Paris, 293–297.Google Scholar
  185. M. Guerineau, J-L. Pernodet et J.M. Simonet (1984): Caractérisation d’un plasmide libre et/ou intégré dans S. ambofaciens. XV° Rencontres de Méribel.Google Scholar
  186. J.M. Simonet, J-L. Pernodet, M. GUERINEAU (1985): Instabilité génétique et amplification chez S. ambofaciens. XVI° Rencontres de Méribel.Google Scholar
  187. J.M. Simonet, J-L. Pernodet, J. Gagnat, M. GUERINEAU: Excision and integration of a self-transmissible replicon of Streptomyces ambofaciens soumis nour publication.Google Scholar
  188. C S Stewart, J Gilmour and M L McConville in “New Developments and Future Perspectives in Research on Rumen Function”. Editor A Niemann, CEC Brussels (1985).Google Scholar
  189. Budde-Niekiel, A., Möller, V., Lembke, J. und Teuber, M. (1985): Ökologie von Bakteriophagen in einer Frischkäserei. MLlchwissenschaft 40: 477–481.Google Scholar
  190. Geis, A., Neve, H. and Teuber, M. (1985): Stability of Plasmids in mesophilic lactic acid streptococci during conjugation. BEP-Report: Plasmid instability; Heraklion. p. 68–70.Google Scholar
  191. Teuber, M. (1986): Genetic engineering with Lactobacteria. Swiss Biotech. 4: 16–17.Google Scholar
  192. Teuber, M. (1986): Mikrobiologie fermentierter Milchprodukte. Chem. MLkro- biol. Technol. Lebensm. 9: 162–172.Google Scholar
  193. J. Kok, J.M.B.M. van der Vossen and G. Venema. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subti1is and Escherichia coli. Appl.Environ.Microbiol. 48, 726–731 (1904).Google Scholar
  194. J. Kok, J.M. van Dijl, J.M.B.M. van der Vossen and G. Venema. Cloning and expression of a Streptococcus cremoris proteinase in Baci11us subti1is and Streptococcus lactis. Appl.Environ.Microbiol. 50, 94–101 (1985).PubMedGoogle Scholar
  195. J.M.B.M. van der Vossen, J. Kok and G. Venema. Construction of cloning, promoter-screening, and terminator-screening shuttle vectors for Baci11us subtilis and Streptococcus lactis. Appl.Environ.Microbiol. 50, 540–542 (1985).PubMedGoogle Scholar
  196. J. Kok, W.M. de Vos, B. Vosman, J.M. van Dijl and G. Venema. Genetic marking of cryptic Streptococcus cremoris plasmids for the development of a transformation system. CEC Research and Training Program Biomol- ecular Engineering Contractants Meeting, Louvain-la-Neuve, Book of Abstracts, p 92 (1982).Google Scholar
  197. J. Kok, J.M.B.M. van der Vossen and G. Venema. Development of host-vector systems in lactic acid bacteria. CEC Research and Training Programme in Biomolecular Engineering, Progress Report, 319–325 (1984).Google Scholar
  198. J. Kok, J.M.B.M. van der Vossen and G. Venema. Construction of plasmid cloning vectors for lactic acid streptococci, also replicating in B. subti1is and E. coli. Abstract 7th European Meeting on Genetic Transformation, Paris, 1984, p. 106.Google Scholar
  199. J. Kok, J.M.B.M. van der Vossen and G. Venema. Construction of plasmid cloning vecotrs for lactic streptococci. CEC Meeting on Genetic Engineering of Microorganisms important for the Agro-food industries, Marseille, 1984, p 80.Google Scholar
  200. G. Venema, J. Kok, J.M.B.M. van der Vossen and S. Bron. Plasmid instability in Baci1lus subti1 is and the use of B. subti1is as an intermediate host for gene cloning in lactic streptococci. In: Molecular Breeding of Microorganisms. 4th Toyobo Biotechnology Foundation Symposion, Tokyo, 1–5 (1985).Google Scholar
  201. J. Kok, J. Maat, J.M.B.M. van der Vossen and G. Venema. International Patent Application PCT/EP85/00077 (1985).Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels-Luxemburg 1986

Authors and Affiliations

  • E. Magnien
    • 1
  1. 1.Division Genetics and BiotechnologyCommission of the European CommunitiesBrusselsBelgium

Personalised recommendations