Advertisement

Application of hybridoma technology to problems in the agricultural sciences

  • H. R. Gamble
Chapter
  • 172 Downloads
Part of the Beltsville Symposia in Agricultural Research book series (BSAR, volume 10)

Abstract

The development of methods for the production of monoclonal antibodies has provided a powerful tool for virtually all areas of the biological sciences. Monoclonal antibodies allow the dissection of complex mixtures mixtures of antigenic molecules; by applying screening procedures to a library of monoclonals, selection for properties such as viral neutralization or enzyme inactivation is possible, thereby identifying proteins with specific biological activities. Similarly, monoclonal antibodies can be used to map the surface of a protein, define cell surface antigens, and localize molecules within cells or tissues. The property of unique specificity associated with clonally-derived antibodies has served to revolutionize the field of diagnostics where the use of polyclonal antisera once dominated. The use of monoclonal antibodies for antigen identification has greatly benefited the study of the immune response to infectious agents and the development of vaccines. With the advent of better methods for the generation of hybridomas such as electrofusion and oncogene transfection, modifications allowing the exploitation of non-immunogenic molecules, and the development of techniques for producing interspecific hybrids, the contribution of this technology as a tool for research in the agricultural sciences will undoubtedly increase.

Keywords

Monoclonal Antibody Myeloma Cell Newcastle Disease Virus Agricultural Science Bovine Leukemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez, A., A. Benedict and C. Mizumoto. 1984. Multiple bacterial etiologies in a citrus epidemic. P. 311 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  2. Anderson, J. 1984. Use of monoclonal antibody in a blocking ELISA to detect group specific antibodies to bluetongue virus. J. Immunol. Meth. 74:139–149.CrossRefGoogle Scholar
  3. Augustine, P.C. and H.D. Danforth. 1984. Use of monoclonal antibodies to locate Eimeria sporozoites (Protozoa) in intestinal sections. Proc. Helminthol. Soc. Wash. 51:361–362.Google Scholar
  4. Banowetz, G.M., E.J. Trione and B.B. Krygier. 1984. Immunological comparison of teliospores of two wheat bunt fungi, Tilletia species, using monoclonal antibodies and antisera. Mycologia 76:51–62.CrossRefGoogle Scholar
  5. Bishop, J.R. and C.H. White. 1984. Antibiotic residue detection in milk — a review. J. Food Protect. 47:647–652.Google Scholar
  6. Borrebaech, C.A.K. 1984. Dependence on T-cell-replacing factor and immunogenic dose for the production of monoclonal antibodies using the in vitro immunization technique. Mol. Immunol. 21:841–845.CrossRefGoogle Scholar
  7. Brandon, D.L. 1984. Monoclonal antibodies for phytohormone research. Pp. 246–250 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  8. Bruck, C., S. Mathol, D. Portetelle, J.D. Franssen, P. Herion and A. Burny. 1982. Monoclonal antibodies define eight independent antigenic sites on the bovine leukemia virus envelope glycoprotein gp51. Virology 122:342–352.PubMedCrossRefGoogle Scholar
  9. Bruck, C., N. Rensonnet, D. Portetelle, Y. Cleuter, M. Mammerickx, A. Burny, R. Manoun, B. Guillemain, M.J. Vander Maaten and J. Ghysdael. 1984. Biologically active epitopes of bovine leukemia virus. Virology 136:20–31.PubMedCrossRefGoogle Scholar
  10. Change, T.H., Z. Steplewski and H. Koprowski. 1980. Production of monoclonal antibodies in serum free media. J. Immunol. Meth. 39:369–375.CrossRefGoogle Scholar
  11. Chase, H.A. 1984. Affinity separations utilizing immobilized monoclonal antibodies — a new tool for the biochemical engineer. Chem. Eng. Sci. 39:1099–1125.CrossRefGoogle Scholar
  12. Collins, J.K., A.C. Butcher, C.A. Riegel, V. McGrane, C.D. Blair, Y.A. Teramoto and S. Winston. 1984. Neutralizing determinants defined by monoclonal antibodies on polypeptides specified by bovine herpesvirus 1. J. Virol. 52:403–409.PubMedGoogle Scholar
  13. Crouch, C.F., T.J.G. Raybould and S.D. Acres. 1984. Monoclonal antibody capture enzyme-linked immunosorbent assay for detection of bovine enteric coronavirus. J. Clin. Microbiol. 19:388–393.PubMedGoogle Scholar
  14. Danforth, H.D. 1983. Use of monoclonal antibodies directed against Eimeria tenella sporozoites to determine stage specificity and in vitro effect on parasite penetration and development. Am. J. Vet. Res. 44:1722–1727.PubMedGoogle Scholar
  15. Davis, W.C., T. Yilma, L.E. Perryman and T.C. McGuire. 1985. Perspectives on the application of monoclonal antibody and transfection technology in veterinary microbiology. Prog. Vet. Microbiol. Immunol. 1:1–24.PubMedGoogle Scholar
  16. Davis, W.C., L.E. Perryman and T.C. McGuire. 1984. The identification and analysis of major functional populations of differentiated cells. Pp. 121–150 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  17. Dobbelaere, D.A.E., P.R. Spooner, W.C. Barry and A.D. Irvin. 1984. Monoclonal antibody neutralizes the sporozoite stage of different Theileria parva stocks. Parasite Immunol. 6:361–370.PubMedCrossRefGoogle Scholar
  18. Galfre, G. and C. Milstein. 1981. Preparation of monoclonal antibodies: strategies and procedures. Meth. Enzymol. 73:3–46.PubMedCrossRefGoogle Scholar
  19. Gamble, H.R. 1984a. Screening hybridomas for antibody production. Pp. 26–32 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  20. Gamble, H.R. 1984b. Application of hybridoma technology to the diagnosis of parasitic disease. Vet. Parasitol. 14:251–261.PubMedCrossRefGoogle Scholar
  21. Gamble, H.R. 1985. Trichinella spiralis: Immunization of mice using monoclonal antibody affinity-isolated antigens. Exp. Parasitol. (in press).Google Scholar
  22. Gamble, H.R. and C.E. Graham. 1984. Monoclonal antibody-purified antigen for the immunodiagnosis of trichinosis. Am. J. Vet. Res. 45:67–74.PubMedGoogle Scholar
  23. Goldsby, R.A., S. Srikumaran and A.J. Guidry. 1984. Cell culture and the origins of hybridoma technology. Pp. 8–14, in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  24. Halk, E.L., H.T. Hsu, J. Aebig and J. Franke. 1984. Production of monoclonal antibodies against three ilarviruses and alfalfa mosaic virus and their use in serotyping. Phytopathology 74:367–372.CrossRefGoogle Scholar
  25. Haas, J.B. and R.H. Kennett. 1980. Characterization of hybridoma immunoglobulins by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Pp. 407–411 in R.H. Kennett, T.J. McKearn, and K.D. Bechtol, eds., Monoclonal Antibodies: Hybridomas: A New Dimension in Biological Analysis. Plenum Press, New York.Google Scholar
  26. Hill, E.K., J.H. Hill and D.P. Durand. 1984. Production of monoclonal antibodies to viruses in the potyvirus group: use in radioimmunoassay. J. Gen. Virol. 65:525–532.PubMedCrossRefGoogle Scholar
  27. Hsu, H.T., R.L. Jordan and R.H. Lawson. 1984. Monoclonal antibodies and plant viruses. ASM News 50:99–102.Google Scholar
  28. Ikuta, K., S. Veda, S. Kato and K. Hirai. 1984. Identification with monoclonal antibodies of glycoproteins of Marek’s disease virus and herpesvirus of turkeys related to virus neutralization. J. Virol. 49:1014–1017.PubMedGoogle Scholar
  29. Iorio, R.M. and M.A. Bratt. 1983. Monoclonal antibodies to Newcastle disease virus: delineation of four epitopes on the HN glycoprotein. J. Virol. 48:440–450.PubMedGoogle Scholar
  30. Jacobs, M. 1984. Basal localization of presumptive auxin transport carriers in pea stem cells. Pp. 239–242, in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  31. Jonak, Z.L., V. Braman and R.H. Kennett. 1984. Transfection of primary mouse lymphocytes with human DNA: production of continuous cell lines producing monoclonal immunoglobulins. Hybridoma 3:107–114.PubMedCrossRefGoogle Scholar
  32. Kearney, J.S., A. Radbruch, B. Liesegang and K. Rajewsky. 1979. A new mouse myeloma cell line which has lost immunoglobulin expression that permits the construction of antibody-secreting hybridomas. J. Immunol. 123:1548–1550.PubMedGoogle Scholar
  33. Kennet, R.H. 1980. Freezing of hybridoma cells. P. 375, in R.H. Kennett, T.J. McKearn, and K.B. Bechtol, eds., Monoclonal Antibodies; Hybridomas: A New Dimension in Biological Analyses. Plenum Press, New York.Google Scholar
  34. Kohler, G. and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–498.PubMedCrossRefGoogle Scholar
  35. Krivi, G.G. and E. Rowold Jr. 1984. Monoclonal antibodies to bovine somatotropin: immunoadsorbent reagents to mammalian somatotropins. Hybridoma 3:151–162.PubMedCrossRefGoogle Scholar
  36. Lampson, L.A. 1980. Immunoprecipitation with monoclonal antibodies. Pp. 395–397, in R.H. Kennett, T.J. McKearn, and K.B. Bechtol, eds., Monoclonal Antibodies: Hybridomas: A New Dimension in Biological Analyses. Plenum Press, New York.Google Scholar
  37. Lampson, L.A. and C.A. Fisher. 1985. Immunoblot specificity of monoclonal antibodies assayed against complex extracts. Anal. Biochem. 144:55–64.PubMedCrossRefGoogle Scholar
  38. Lankow, R.K., S.H. Woodhead, R.J. Patterson, R. Massey and G. Schochetman. 1984. Monoclonal antibody diagnostics in plant disease management. Plant Dis. 68:1100–1101.Google Scholar
  39. Letchworth, G.J. and J.A. Appleton. 1984. Methods for the production of monoclonal antibodies. USDA, Agriculture Handbook 630.Google Scholar
  40. Littlefield, J.W. 1964. Selection of hybrids from mating of fibroblasts in vitro and their presumed recombinants. Science 145:709–710.PubMedCrossRefGoogle Scholar
  41. Lunney, J.K. 1984. Monoclonal antibodies in the analysis of immune responses in swine. Pp. 298–301 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  42. Magee, W.E., C.F. Beck and S.S. Ristow. 1984. Monoclonal antibodies specific for Corynebacterium sepedonicum, the causative agent of potato ring rot. P. 326 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  43. Mammerickx, M., D. Portetelle, C. Bruck and A. Burny. 1984. Use of an ELISA involving monoclonal antibody for the detection of antibodies against bovine leukemia virus in a herd with a high incidence of enzootic bovine leukosis. Zbl. Vet. Med. 31:210–218.Google Scholar
  44. Marx, J.L. 1985. Making antibodies without the antigens. Science 228:162–165.PubMedCrossRefGoogle Scholar
  45. Mattingly, J.A. 1984. An enzyme immunoassay for the detection of all Salmonella using a combination of a myeloma protein and a hybridoma antibody. J. Immunol. Meth. 73:147–156.CrossRefGoogle Scholar
  46. McKearn, T.J. 1980. Cloning of hybridoma cells by limiting dilution in fluid phase. P. 374 in R.H. Kennett, T.J. McKearn, and K.B. Bechtol, eds., Monoclonal Antibodies: Hybridomas: A New Dimension in Biological Analyses. Plenum Press, New York.Google Scholar
  47. McHugh, Y.E. 1984. In vitro immunization for hybridoma production. Pp. 216–221 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  48. Mills, K.W. and K.L. Tietze. 1984. Monoclonal antibody enzyme-linked immunosorbent assay for the identification of K99-positive Escherichia coli isolates from calves. J. Clin. Microbiol. 19:498–501.PubMedGoogle Scholar
  49. Morter, R.L. 1984. Genetically engineered monoclonal antibody for E. coil diarrhea in calves. Mod. Vet. Prac. June, pp. 427–428.Google Scholar
  50. Morgan, D.O., B.H. Robertson, D.M. Moore, C.A. Timpone and P.D. McKercher. 1984. Aphthoviruses: control of foot-and-mouth disease with genetically engineered vaccines. Pp. 135–145 in E. Kurstak, ed., Control of Virus Diseases, Marcel Dekker, Inc., New York.Google Scholar
  51. Musoke, A.J., V.M. Nantulya, F.R. Rurangirwa and G. Buscher. 1984. Evidence for a common antigenic determinant on sporozoites of several Theileria parva strains. Immunology 52: 231–238.PubMedGoogle Scholar
  52. Newman, M.J., K.H. Beegle and D.F. Antczak. 1984. Xenogenic monoclonal antibodies to cell surface antigens of equine lymphocytes. Am. J. Vet. Res. 45:626–632.PubMedGoogle Scholar
  53. Nilsson, K., W. Scheirer, O.W. Merten, L. Ostberg, E. Liehl, H.W.D. Katinger and K. Mosbach. 1983. Entrapment of animal cells for production of monoclonal antibodies and other biomolecules. Nature 310:629–630.CrossRefGoogle Scholar
  54. Oi, V.T. and L.A. Herzenberg. 1980. Immunoglobulin-producing cell lines. Pp. 351–372 in B.B. Mishell and S.M. Shiigi, eds., Selected Methods in Cellular Immunology. Freeman, San Francisco.Google Scholar
  55. Paul, P.S., R.A. VanDeusen and W.L. Mengling. 1985. Monoclonal precipitating antibodies to porcine immunoglobulin M. Vet. Immunol. Immunopathol. 8:311–328.PubMedCrossRefGoogle Scholar
  56. Pescovitz, M.D., J.K. Lunney, and D.H. Sachs. 1984. Preparation and characterization of monoclonal antibodies reactive with porcine PBL. J. Immunol. 133:368–375.PubMedGoogle Scholar
  57. Pescovitz, M.D., J.K. Lunney and D.H. Sachs. 1985. Murine anti-swine T4 and T8 monoclonal antibodies: distribution and effects on proliferative and cytotoxic T cells. J. Immunol. 134:37–44.PubMedGoogle Scholar
  58. Potocnjak, D., F. Zavala, R. Nussenzweig and V. Nussenzweig. 1982. Inhibition of idiotype-anti-idiotype interaction for detection of a parasite antigen: a new immunoassay. Science 215:1637–1639.PubMedCrossRefGoogle Scholar
  59. Pratt, L.H. 1984. Application of monoclonal antibodies to the characterization of phytochrome. Pp. 243–245 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  60. Quinn, R., A.M. Campbell and A.P. Phillips. 1984. A monoclonal antibody specific for the A antigen of Brucella spp. J. Gen. Microbiol. 130:2285–2289.PubMedGoogle Scholar
  61. Raybould, T.J.G., C.F. Crouch, L.J. McDougall and T.C. Watts. 1985. Bovine-murine hybridoma that secretes bovine monoclonal antibody of defined specificity. Am. J. Vet. Res. 46:426–427.PubMedGoogle Scholar
  62. Robertson, B.H., D.O. Morgan and D.M. Moore. 1984. Localization of neutralizing epitopes defined by monoclonal antibodies generated against the outer capsid polypeptide, VP1, of foot-and-mouth disease virus A12. Virus Res. 1:489–500.PubMedCrossRefGoogle Scholar
  63. Sacks, D.L., K.M. Esser and A. Sher. 1982. Immunization of mice against African trypanosomiasis using anti-idiotypic antibodies. J. Expl. Med. 155:1108–1119.CrossRefGoogle Scholar
  64. Sadowski, P.L., R.A. Wilson and D.M. Sherman. 1984. A monoclonal antibody specific for the K99 fimbrial adhesin in Escherichia coli, useful for the reduction of mortality in neonatal pigs. P. 331 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  65. Schurig, G.C., C. Hammerberg and B.R. Finkler. 1984. Monoclonal antibodies to Brucella surface antigens associated with the smooth lipopolysaccharide complex. Am. J. Vet. Res. 45:967–971.PubMedGoogle Scholar
  66. Silberman, L.G., N. Datta, P. Hoops and S.J. Roux. 1985. Characterization of monoclonal antibodies to oat phytochrome by competitive radioimmunoassays and comparative immunoblots of phytochrome peptides. Arch. Biochem. Biophys. 236:150–158.PubMedCrossRefGoogle Scholar
  67. Silberstein, D.S. and D.D. Despommier. 1984. Antigens from Trichinella spiralis that induce a protective response in the mouse. J. Immunol. 123:898–904.Google Scholar
  68. Srikumaran, S., A.J. Guidry and R.A. Goldsby. 1982. Production and characterization of monoclonal antibodies to bovine immunoglobulin G2. Am. J. Vet. Res. 43:21–25.PubMedGoogle Scholar
  69. Srikumaran, S., A.J. Guidry and R.A. Goldsby. 1983. Bovine x mouse hybridomas that secrete bovine immunoglobulin G1. Science 220:522–524.PubMedCrossRefGoogle Scholar
  70. Thompson, M.R., H. Brandwein, M. Labine-Racke and R.A. Giannella. 1984. Simple and reliable enzyme-linked immunosorbent assay with monoclonal antibodies for detection of Escherichia coli heat-stable enterotoxins. J. Clin. Microbiol. 20:59–64.PubMedGoogle Scholar
  71. Uytdehaag, F.G.C.M. and A.D.M.E. Osterhaus. 1985. Induction of neutralizing antibody in mice against poliovirus type II with monoclonal anti-idiotypic antibody. J. Immunol. 134:1225–1229.PubMedGoogle Scholar
  72. Van Ness, J., U.K. Laemmli and D.E. Pettijohn. 1984. Immunization in vitro and production of monoclonal antibodies specific to insoluble and weakly immunogenic proteins. Proc. Nat. Acad. Sci. 81:7897–7901.PubMedCrossRefGoogle Scholar
  73. Van Regenmortel, M.H.V. 1984. Molecular dissection of antigens by monoclonal antibodies. Pp. 43–82 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar
  74. Wright, IG., M. White, P.D. Tracey-Patte, R.A. Donaldson, B.V. Goodger, D.J. Waltisbuhl and D.F. Mahoney. 1983. Babesia bovis: isolation of a protective antigen by using monoclonal antibodies. Inf. Immun. 41:244–250.Google Scholar
  75. Zimmerman, V. and J. Vienken. 1984. Electrofusion of cells. Pp. 173–199 in N.J. Stern and H.R. Gamble, eds., Hybridoma Technology in Agricultural and Veterinary Research. Rowman and Allanheld, Totowa, New Jersey.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1986

Authors and Affiliations

  • H. R. Gamble
    • 1
  1. 1.Helminthic Diseases LaboratoryAnimal Parasitology Institute, Agricultural Research Service, U.S. Department of AgricultureBeltsvilleUSA

Personalised recommendations