Alternative error structures

  • G. Barrie Wetherill
  • P. Duncombe
  • M. Kenward
  • J. Köllerström
  • S. R. Paul
  • B. J. Vowden
Part of the Monographs on Statistics and Applied Probability book series (MSAP)


In everything done so far it has been assumed that only the response variables are subject to error or random variation, and that these errors are statistically independent. In practice, examples where very different error structures are present are very common, as the examples below illustrate. This chapter presents only a brief introduction to the problems presented by these alternative error structures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. W. (1984a) Estimating linear statistical relationships. Ann. Statist., 12, 1–45.CrossRefGoogle Scholar
  2. Anderson, T. W. (1984b) An Introduction to Multivariate Statistical Analysis, 2nd edn. Wiley, New York.Google Scholar
  3. Berman, M. (1983) Estimating the parameters of a circle when angular differences are known. Appl. Statist., 32, 1–6.CrossRefGoogle Scholar
  4. Chan, N. N. (1965) On circular functional relationships. J. Roy. Statist. Soc. B, 27, 45–56.Google Scholar
  5. Chan, N. N. (1982) Linear structural relationships with unknown error variances. Biometrika, 69, 277–279.CrossRefGoogle Scholar
  6. Cook, D. G. and Pocock, S. J. (1983) Multiple regression in geographical mortality studies, with allowance for spatially correlated errors. Biometrics, 39, 361–371.CrossRefGoogle Scholar
  7. Copas, J. B. (1972) The likelihood surface in the linear functional relationship problem. J. Roy. Statist. Soc. B, 34, 274–278.Google Scholar
  8. Cox, D. R. (1968) Notes on some aspects of regression analysis. J. Roy. Statist. Soc. A, 131, 265–279.Google Scholar
  9. Crowder, M. J. (1978) On concurrent regression lines. Appl. Statist., 27, 310–318.CrossRefGoogle Scholar
  10. Davies, R. B. and Hutton, B. (1975) The effect of errors on the independent variables in linear regression. Biometrika, 62, 383–391 (corrected 64, 655 ).Google Scholar
  11. Ehrenberg, A. S. C. (1968) The elements of lawlike relationships. J. Roy. Statist. Soc A, 31, 280–302.Google Scholar
  12. Felsenstein, J. (1981) Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution, 35, 1229–1242.CrossRefGoogle Scholar
  13. Grenander, U. and Rosenblatt, M. (1957) Statistical Analysis of Stationary Time Series. Wiley, New York.Google Scholar
  14. Hald, A. (1952) Statistical Theory with Engineering Applications. Wiley, New York.Google Scholar
  15. Hodges, S. D. and Moore, P. G. (1972) Data uncertainties and least squares regression. Appl. Statist., 21, 185–195.CrossRefGoogle Scholar
  16. Jolicoeur, P. (1975) Linear regressions in fishing research: some comments. J. Fish. Res. Board Can., 30, 409–434.Google Scholar
  17. Judge, G. G., Griffith, W. E., Carter-Hill, R. and Lee, Tsoung-Chao (1980) The Theory and Practice of Econometrics. Wiley, New York.Google Scholar
  18. Kendall, M. G. and Stuart, A. (1979) The Advanced Theory of Statistics, Vol. 2. 4th Edn, Griffin, London.Google Scholar
  19. Lindley, D. V. (1947) Regression lines and the linear functional relationship. J. Roy. Statist. Soc. Suppl., 9, 218–244.CrossRefGoogle Scholar
  20. Madansky, A. (1959) The fitting of straight lines when both variables are subject to error. J. Amer. Statist. Assoc., 54, 173–205.CrossRefGoogle Scholar
  21. Mayrovitz, H. N. and Roy, J. (1983) Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter. Amer. J. Physiol., 245, H1031-H1038 (Heart Circ. Physiol., 14 ).Google Scholar
  22. Moran, P. A. P. (1971) Estimating structural and functional relationships. J. Multivar. Anal., 1, 232–255.CrossRefGoogle Scholar
  23. Murray, C. D. (1926) The physiological principle of minimum work. 1: The vascular system and the cost of blood volume. Proc. Nat. Acad. Sci. USA, 12, 207–213.CrossRefGoogle Scholar
  24. Nelder, J. A. (1968) Regression, model building and invariance. J. Roy. Statist. Soc. A, 131, 303–315.CrossRefGoogle Scholar
  25. Reiersøl, O. (1950) Identifiability of a linear relation between variables which are subject to error. Econometrica, 18, 375–389.CrossRefGoogle Scholar
  26. Seber, G. A. F. (1977) Linear Regression Analysis. Wiley, New York.Google Scholar
  27. Solari, M. E. (1969) The ‘maximum likelihood solution’ of the problem of estimating a linear functional relationship. J. Roy. Statist. Soc. B, 31, 372–375.Google Scholar
  28. Sprent, P. (1969) Models in Regression and Related Topics. Methuen, London.Google Scholar
  29. Swindel, B. F. and Bower, D. R. (1972) Rounding errors in independent variables in a general linear model. Technometrics, 14, 215–218.CrossRefGoogle Scholar
  30. Theobald, C. M. and Mallinson, J. R. (1978) Comparative calibration, linear structural relationships and congeneric measurements. Biometrics, 34, 39–45.CrossRefGoogle Scholar
  31. Watson, G. S. and Hannan, E. J. (1956) Serial correlation in regression analysis, II. Biometrika, 43, 436–495.Google Scholar
  32. Williams, E. J. (1959) Regression Analysis. Wiley, New York.Google Scholar

Copyright information

© G. Barrie Wetherill 1986

Authors and Affiliations

  • G. Barrie Wetherill
    • 1
  • P. Duncombe
    • 2
  • M. Kenward
    • 3
  • J. Köllerström
    • 3
  • S. R. Paul
    • 4
  • B. J. Vowden
    • 3
  1. 1.Department of StatisticsThe University of Newcastle upon TyneUK
  2. 2.Applied Statistics Research UnitUniversity of Kent at CanterburyUK
  3. 3.Mathematical InstituteUniversity of Kent at CanterburyUK
  4. 4.Department of Mathematics and StatisticsUniversity of WindsorCanada

Personalised recommendations